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Two worlds of ML models

Neural Networks

SGD

Gradient Boosted 
Decision Trees

FGD

é.

Å Automated feature engineering

Å Transfer learning

Å End-to-end training

Å Built-in input preprocessing

Å Efficient for heterogeneous data 

ÅOutcome interpretation

Is it possible to get the best of both worlds? 



Graph Neural Networks
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Graph Neural Network

Graph Neural Network
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GNN aggregates neighborhood features and 
applies some (non-linear) function on top.
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Graph Neural Network training

Predictions

SGD update

GNN
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Gradient Boosted Decision Trees
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Gradient Boosted Decision Trees
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GBDT maps features to predictions.
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Decision Tree training
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How a single DT makes prediction?
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Decision Tree training
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How a single DT makes prediction?

Leaves take the average target labels of 
all observations that end up in that leaf.
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GBDT training
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How do we 
combine trees?

We build each new tree approximating 
the error of the previous trees.
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Note on gradient descent

ὪȡὋȟὢ ᵐ Ὃȟὢ

Gradient Descent in space of parameters (GNN)
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Boost-GNN
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Architecture

ÅData preprocessing inherited by GBDT 
model (missing values, cat features, etc.) 

Å Pluggable with any GBDT or GNN model 

Å End-to-end training

Å Interpretation 1: GNN with embedding 
layer

Å Interpretation 2: GBDT with parametric 
loss function
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BGNN inference
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First, boost features with GBDT, then 
apply GNN on new features.


