Generalized Conditional Gradient with Augmented Lagrangian for Composite Minimization

Antonio Silveti-Falls (Joint work with Cesare Molinari and Jalal Fadili)

History and Motivation

- 1956 Marguerite Frank and Philip Wolfe: An algorithm for quadratic programming.
- Considered the following problem:

$$\min_{x\in\mathcal{D}\subset\mathbb{R}^n}f(x)$$

 D is a convex, compact set and f is Lipschitz-smooth.

The Frank-Wolfe Algorithm

Algorithm: Frank-Wolfe (Conditional Gradient)

Input:
$$x_0 \in \mathcal{D}$$
.

$$k = 0$$

repeat

$$\gamma_{k} = \frac{1}{k+2}
s_{k} \in \underset{s \in \mathcal{D}}{\operatorname{Argmin}} \langle \nabla f(x_{k}), s \rangle
x_{k+1} = x_{k} - \gamma_{k} (x_{k} - s_{k})
k \leftarrow k + 1$$

until convergence;

Output: x_{k+1} .

(Credit: Stephanie Stutz/Wikipedia)

Frank-Wolfe for sparse optimizaiton

Assumptions for Frank-Wolfe

2011 Martin Jaggi PhD Thesis: Sparse Convex Optimization Methods for Machine Learning

Curvature constant:

$$C_{f} = \sup_{\substack{x,z \in \mathcal{D} \\ \gamma \in [0,1] \\ y = \gamma z + (1-\gamma)x}} \frac{\frac{2}{\gamma^{2}} \left(f\left(y\right) - f\left(x\right) - \left\langle y - x, \nabla f\left(x\right) \right\rangle \right)}{\frac{2}{\gamma^{2}} \left(f\left(y\right) - f\left(x\right) - \left\langle y - x, \nabla f\left(x\right) \right\rangle \right)}$$

We call $D_f(y,x) = f(y) - f(x) - \langle y - x, \nabla f(x) \rangle$ the Bregman divergance associated to f.

• Bounded by the Lipschitz constant L_f of ∇f on D:

$$\forall x, y \in \mathcal{D}, \quad \|\nabla f(x) - \nabla f(y)\| \le L_f \|x - y\|$$

Advantages of Frank-Wolfe

Question: why not just do projected gradient descent?

- ullet The set ${\mathcal D}$ might not admit easy projections.
 - Nuclear norm $\|\cdot\|_*$ of a matrix (ℓ^1 norm on singular values).
- The updates of Frank-Wolfe maintain structure.
 - Useful when \mathcal{D} is atomically generated, i.e. $\mathcal{D} = \text{conv}(a_1, \dots a_i)$.
 - Sparsity, low-rank, etc.
- The iterates are always feasible, i.e. Frank-Wolfe is an interior point method.

Limitations

- Lipschitz-smoothness is a strong assumption.
- Not able to handle nonsmooth problems.
- ullet Affine constraints are not handled in a straightforward way if the intersection of the affine constraint and the set ${\cal D}$ is not simple.

Modern Problem

Classical problem (\mathbb{R}^n) :

$$\min_{\mathbf{x} \in \mathcal{D}} f(\mathbf{x})$$

- f is Lipschitz-smooth.
- $\mathcal{D} \subset \mathbb{R}^n$ is convex, compact.

Modern problem (Hilbert space):

$$\min_{Ax=b} f(x) + (g \circ T)(x) + h(x)$$

- f is relatively smooth.
- domh is compact.
- h is Lipschitz-continuous.
- \bullet prox_g is accessible.
- T and A are bounded linear operators.

Relative Smoothness

Let $F: \mathcal{H} \to \mathbb{R} \cup \{+\infty\}$ and $\zeta:]0,1] \to \mathbb{R}_+$. The pair (f,\mathcal{D}) , where $f: \mathcal{H} \to \mathbb{R} \cup \{+\infty\}$ and $\mathcal{D} \subset \mathrm{dom}(f)$, is said to be (F,ζ) -smooth if there exists an open set \mathcal{D}_0 such that $\mathcal{D} \subset \mathcal{D}_0 \subset \mathrm{int}\left(\mathrm{dom}\left(F\right)\right)$ and

- F and f are differentiable on \mathcal{D}_0 ;
- F f is convex on \mathcal{D}_0 ;
- The following holds,

$$K_{(F,\zeta,\mathcal{D})} = \sup_{\substack{x,s\in\mathcal{D};\ \gamma\in]0,1]\\z=x+\gamma(s-x)}} \frac{D_F(z,x)}{\zeta(\gamma)} < +\infty.$$

 $K_{(F,\zeta,\mathcal{C})}$ is a far-reaching generalization of the standard curvature constant.

Moreau-Yosida Regularization

Given a function closed convex proper function g, the Moreau envelope (Moreau-Yosida regularization) of g is,

$$g^{\beta}(x) = \min_{y} g(y) + \frac{1}{2\beta} ||x - y||^{2}$$

- The Moreau envelope is always Lipschitz-smooth.
- Gradient is given by,

$$\nabla g^{\beta}(x) = \frac{x - \operatorname{prox}_{\beta g}(x)}{\beta}$$

The proximal operator associated to g with parameter β is given by,

$$\operatorname{prox}_{\beta g}\left(x\right) = \operatorname{Argmin}_{y} g\left(y\right) + \frac{1}{2\beta} \left\|x - y\right\|^{2}$$

Augmented Lagrangian

Constrained optimization problems can be replaced by a Lagrangian saddle point problem,

$$\min_{Ax=b} f(x) = \min_{x} \max_{\mu} f(x) + \langle \mu, Ax - b \rangle$$

which admits a so-called dual problem,

$$\max_{\mu} \min_{x} f(x) + \langle \mu, Ax - b \rangle$$

We can also consider an augmented Lagrangian problem,

$$\min_{Ax=b} f(x) = \min_{x} \max_{\mu} f(x) + \langle \mu, Ax - b \rangle + \frac{\rho}{2} ||Ax - b||^{2}$$

The CGALP Algorithm

Algorithm: Conditional Gradient with Augmented Lagrangian and Proximal-step (CGALP)

```
Input: x_0 \in \mathcal{D} = \text{dom}(h); \mu_0 \in \text{ran}(A); (\gamma_k)_{k \in \mathbb{N}}, (\beta_k)_{k \in \mathbb{N}}
                  (\theta_k)_{k\in\mathbb{N}}, (\rho_k)_{k\in\mathbb{N}}\in\ell_+.
k=0
repeat
       y_k = \operatorname{prox}_{\beta_k g} (Tx_k)
z_k = \nabla f(x_k) + T^* (Tx_k - y_k) / \beta_k + A^* \mu_k + \rho_k A^* (Ax_k - b)
s_k \in \operatorname{Argmin}_s \{ h(s) + \langle z_k, s \rangle \}
       x_{k+1} = x_k - \gamma_k (x_k - s_k)
\mu_{k+1} = \mu_k + \theta_k (Ax_{k+1} - b)
k \leftarrow k + 1
```

until convergence;

Output: x_{k+1}

(ロ) (部) (注) (注) 注 り(0)

Asymptotic Feasibility

Theorem

Let $(x_k)_{k\in\mathbb{N}}$ be a sequence of iterates generated by CGALP.

• Axk converges strongly to b, i.e.,

$$\lim_{k\to\infty}\|Ax_k-b\|=0$$

Asymptotic Feasibility Rate

Pointwise rate:

$$\inf_{0 \le i \le k} \|Ax_i - b\| = O\left(\frac{1}{\sqrt{\Gamma_k}}\right)$$

Furthermore, \exists a subsequence $(x_{k_j})_{j\in\mathbb{N}}$ such that

$$||Ax_{k_j}-b||\leq \frac{1}{\sqrt{\Gamma_{k_j}}},$$

where $\Gamma_k = \sum_{i=0}^k \gamma_i$.

Ergodic rate: let $\bar{x}_k = \sum_{i=0}^k \gamma_i x_i / \Gamma_k$. Then

$$||A\bar{x}_k - b|| = O\left(\frac{1}{\sqrt{\Gamma_k}}\right)$$

Convergence to Optimality

Theorem

Let $(x_k)_{k\in\mathbb{N}}$ be the sequence of primal iterates generated by CGALP and (x^\star,μ^\star) a saddle-point pair for the Lagrangian. Then the following holds

Convergence of the Lagrangian:

$$\lim_{k\to\infty}\mathcal{L}\left(x_k,\mu^{\star}\right)=\mathcal{L}\left(x^{\star},\mu^{\star}\right)$$

• Every weak cluster point \tilde{x} of $(x_k)_{k\in\mathbb{N}}$ is a solution of the primal problem, and $(\mu_k)_{k\in\mathbb{N}}$ converges weakly to $\tilde{\mu}$ a solution of the dual problem, i.e., $(\tilde{x}, \tilde{\mu})$ is a saddle point of \mathcal{L} .

Lagrangian Convergence Rate

Pointwise rate:

$$\inf_{0 \le i \le k} \mathcal{L}\left(x_i, \mu^*\right) - \mathcal{L}\left(x^*, \mu^*\right) = O\left(\frac{1}{\Gamma_k}\right)$$

Furthermore, \exists a subsequence $\left(x_{k_j}
ight)_{j\in\mathbb{N}}$ such that

$$\mathcal{L}\left(x_{k_j+1}, \mu^{\star}\right) - \mathcal{L}\left(x^{\star}, \mu^{\star}\right) \leq \frac{1}{\Gamma_{k_j}}$$

Ergodic rate: let $\bar{x}_k = \sum_{i=0}^k \gamma_i x_{i+1} / \Gamma_k$. Then

$$\mathcal{L}(\bar{x}_k, \mu^*) - \mathcal{L}(x^*, \mu^*) = O\left(\frac{1}{\Gamma_k}\right)$$

Simple Projection Problem

Lagrangian Convergence Rate

Ergodic convergence profile for various step size choices,

$$\theta_k = \gamma_k = \frac{(\log(k+2))^a}{(k+1)^{1-b}}, \quad \rho = 2^{2-b} + 1$$

Matrix Completion Problem

Consider the following matrix completion problem,

$$\min_{X \in \mathbb{R}^{N \times N}} \left\{ \left\| \Omega X - y \right\|_1 : \ \left\| X \right\|_* \le \delta_1, \left\| X \right\|_1 \le \delta_2 \right\}$$

Lift to a product space for CGALP:

$$\min_{\boldsymbol{X} \in \left(\mathbb{R}^{N \times N}\right)^2} \left\{ \textit{G}\left(\Omega \boldsymbol{X}\right) + \textit{H}(\boldsymbol{X}\right) : \; \Pi_{\mathcal{V}^{\perp}} \boldsymbol{X} = 0 \right\}$$

with

$$G(\Omega X) = \frac{1}{2} \left(\|\Omega X^{(1)} - y\|_{1} + \|\Omega X^{(2)} - y\|_{1} \right)$$

and

$$H(\boldsymbol{X}) = \iota_{\mathbb{B}^{\delta_1}_*}\left(X^{(1)}\right) + \iota_{\mathbb{B}^{\delta_2}_1}\left(X^{(2)}\right)$$

Direction Finding Step

$$S_{k}^{(1)} \in \underset{S^{(1)} \in \mathbb{B}_{\|\cdot\|_{*}}^{\delta_{1}}}{\operatorname{Argmin}} \left\langle \frac{\Omega^{*} \left(\Omega X_{k}^{(1)} - y - \operatorname{prox}_{\frac{\beta_{k}}{2}\|\cdot\|_{1}} \left(\Omega X_{k}^{(1)} - y\right)\right)}{\beta_{k}} + \frac{1}{2} \left(\mu_{k}^{(1)} - \mu_{k}^{(2)} + \rho_{k} \left(X_{k}^{(1)} - X_{k}^{(2)}\right)\right), S^{(1)} \right\rangle$$

$$S_{k}^{(2)} \in \underset{S^{(2)} \in \mathbb{B}_{\|\cdot\|_{1}}^{\delta_{2}}}{\operatorname{Argmin}} \left\langle \frac{\Omega^{*} \left(\Omega X_{k}^{(2)} - y - \operatorname{prox}_{\frac{\beta_{k}}{2}\|\cdot\|_{1}} \left(\Omega X_{k}^{(2)} - y\right)\right)}{\beta_{k}} + \frac{1}{2} \left(\mu_{k}^{(2)} - \mu_{k}^{(1)} + \rho_{k} \left(X_{k}^{(2)} - X_{k}^{(1)}\right)\right), S^{(2)} \right\rangle$$

CGALP Ergodic Convergence Rate

Ergodic convergence profiles for CGALP.

Future Work

- Stochastic setting: noise on ∇f , noise on $\operatorname{prox}_{\beta g}$, noise on linear minimization oracle.
- (Reflexive) Banach space setting: applicable to more general problems.

Thanks for listening

Thanks for listening.

Full paper available on arxiv: https://arxiv.org/abs/ 1901.01287

"Generalized Conditional Gradient with Augmented Lagrangian for Composite Minimization" - Antonio Silveti-Falls, Cesare Molinari, Jalal Fadili.

Special thanks to Gabriel Peyré for fruitful discussions regarding this work.

