

Autour de la cryptographie post-quantique Journée commune NormaSTIC, Normandie Mathématiques

Magali Bardet, joint work with Vlad Dragoi, Ayoub Otmani, Jean-Gabriel Luque, Jean-Pierre Tillich, J. Chaulet

> Laboratoire LITIS - Université de Rouen Équipe C&A

> > 20 mai 2016

1/31

3 Codes polaires

3/31

Cryptographie asymétrique

Problèmes difficiles utilisés aujourd'hui

- les algorithmes basés sur la factorisation des nombres (RSA),
- les algorithmes basés sur le logarithme discret (El Gamal, DSA, DH, etc).

Tailles des clefs

- RSA : 2048 bits
- El Gamal sur courbes elliptiques : 256 bits.

Cryptographie asymétrique

Problèmes difficiles utilisés aujourd'hui

- les algorithmes basés sur la factorisation des nombres (RSA),
- les algorithmes basés sur le logarithme discret (El Gamal, DSA, DH, etc).

Tailles des clefs

- RSA : 2048 bits
- El Gamal sur courbes elliptiques : 256 bits.

Algorithme de Shor

Algorithme dans le modèle quantique qui résout ces problèmes efficacement.

4/31

Codes polaires

Cryptographie post-quantique

Algorithmes cryptographique « sûrs » dans le modèle quantique

- Cryptographie basée sur les réseaux (ex : NTRU).
- Cryptographie multivariée (ex : UOV).
- Cryptographie basée sur les codes (ex : McEliece).

5/31

Codes polaires

Cryptosystème de McEliece (1978)

Problème mathématique

- Clef privée : un code correcteur d'erreur linéaire avec un algorithme de décodage efficace (en temps polynomial);
- Clef publique : une base aléatoire de ce code.

Codes proposés par McEliece : les codes de Goppa.

6/31

Codes polaires

Cryptosystème de McEliece naïf

Génération de la clef privée

- On choisit uniformément un code linéaire \mathscr{C} sur \mathbb{F}_q , dans une famille de codes corrigeant *t* erreurs efficacement;
- G matrice génératrice de C de taille k × n,
 P matrice de permutation de taille n,
 S matrice inversible de taille k;
- La clef privée est (S,G,P) plus l'algorithme de décodage;
- La clef publique est (\mathbf{G}_{pub}, t) où $\mathbf{G}_{pub} = \mathbf{S} \times \mathbf{G} \times \mathbf{P}$.

Chiffrement/Déchiffrement

Chiffrement

Pour $\mathbf{m} \in \mathbb{F}_q^k$,

• tirer une erreur $\mathbf{e} \in \mathbb{F}_q^n$ de poids de Hamming t,

Chiffrement/Déchiffrement

Chiffrement

Pour $\mathbf{m} \in \mathbb{F}_q^k$,

- tirer une erreur $\mathbf{e} \in \mathbb{F}_q^n$ de poids de Hamming t,
- chiffrer $\mathbf{c} = \mathbf{m}\mathbf{G}_{pub} + \mathbf{e}$.

Déchiffrement

- calculer $\mathbf{z} = \mathbf{c}\mathbf{P}^{-1}$,
- calculer $\mathbf{y} = Decode_{\mathbf{G}}(\mathbf{z})$,
- retourner $\mathbf{m}' = \mathbf{y}\mathbf{S}^{-1}$.

Taille de la clef publique pour une sécurité en 2¹²⁸

- code de Goppa : plus de 8.000.000 bits.
- code QC-MDPC : 65.000 bits.

Codes proposés

- Codes de Goppa (1978-).
- Codes GRS (1986-2014).
- sous-code d'un GRS (2005-2010).
- Codes Reed-Muller (1994-2007).
- Codes de Goppa Géométriques (1996-2014).
- Codes LDPC (2000-2008), (2008-).
- Codes de Goppa sauvages (2010-2014).
- Codes MDPC (2012-)
- Codes Polaires (2014-)

QC-MDPC codes (MTSB12)

Matrices génératrice et de parité

Code linéaire $\mathscr{C} = \{ c \in \mathbb{F}_2^n \mid \exists m \in \mathbb{F}_2^k, \ c = m \times \mathbf{G} \} = \{ c \in \mathbb{F}_2^n \mid \mathbf{H}^T c = 0 \}.$

Quasi-Cyclic Moderate Density Parity Check codes

- chaque ligne de la matrice de parité a un poids constant w $(w = O(\sqrt{n \log n}));$
- décodage par l'algorithme « bit flipping » de Gallager;
- quasi-cyclic : la matrice de parité est cyclique par blocs.

Attaque sur la clef privée

Soit \mathscr{C} un code QC-MDPC sur \mathbb{F}_2 de paramètres (2p, p, w).

Génération de la clef

• Une matrice de parité pour *C* peut être entièrement décrite par

$$(h_1, h_2) \in (\mathbb{F}_2[x]/(x^p-1))^2,$$

où $||h_1|| + ||h_2|| = w$ et h_2 inversible. La clef privée est (h_1, h_2) . • La clef publique est $f = \frac{h_1}{h_2} \in \mathbb{F}_2[x]/(x^p - 1)$.

p est premier.

13/31

Codes polaires

Attaque sur la clef privée

Problème de Reconstruction Rationnelle

Étant donné $f \in \mathbb{F}_2[x]$ avec deg(f) < p, trouver $(\varphi, \psi) \in \mathbb{F}_2[x]^2$ tels que

$$f = rac{arphi}{arphi} \mod x^p - 1, \quad \deg(arphi) < r, \quad \deg(arphi) \leqslant p - r.$$

Algorithme d'Euclide Étendu appliqué à $x^p - 1$ et f. Complexité quadratique, sous-quadratique (Knuth, Schönhage 1971).

13/31

Codes polaires

Attaque sur la clef privée

Problème de Reconstruction Rationnelle

Étant donné $f \in \mathbb{F}_2[x]$ avec deg(f) < p, trouver $(\varphi, \psi) \in \mathbb{F}_2[x]^2$ tels que

$$f = rac{arphi}{arphi} \mod x^p - 1, \quad \deg(arphi) < r, \quad \deg(arphi) \leqslant p - r.$$

Algorithme d'Euclide Étendu appliqué à $x^p - 1$ et f. Complexité quadratique, sous-quadratique (Knuth, Schönhage 1971). Combien de clefs sont attaquables par cet algorithme?

Codes polaires

Comptage des Clefs faibles BDLO '16

Soit \mathscr{C} un code QC-MDPC de paramètres (2p, p, w) où $w = w_1 + w_2$ (w_i impair).

Notations

•
$$\mathscr{P}_{\omega_1,\omega_2} = \left\{ (h_1,h_2) \in (\mathbb{K}[x]/(x^p-1))^2 \mid \|h_i\| = \omega_i \text{ impairs} \right\}.$$

•
$$\mathscr{P}_{\omega} = \bigcup_{\omega_1 + \omega_2 = \omega} \mathscr{P}_{\omega_1, \omega_2}.$$

•
$$\mathscr{W}_{\omega} = \{(h_1, h_2) \in \mathscr{P}_{\omega} : \deg(h_1) + \deg(h_2) < p\}.$$

•
$$\mathscr{W}_{\omega_1,\omega_2} = \mathscr{W}_{\omega} \cap \mathscr{P}_{\omega_1,\omega_2}.$$

Comptage des Clefs faibles BDLO '16

Soit \mathscr{C} un code QC-MDPC de paramètres (2p, p, w) où $w = w_1 + w_2$ (w_i impair).

Notations

•
$$\mathscr{P}_{\omega_1,\omega_2} = \left\{ (h_1,h_2) \in (\mathbb{K}[x]/(x^p-1))^2 \mid \|h_i\| = \omega_i \text{ impairs} \right\}.$$

•
$$\mathscr{P}_{\omega} = \bigcup_{\omega_1 + \omega_2 = \omega} \mathscr{P}_{\omega_1, \omega_2}.$$

•
$$\mathscr{W}_{\omega} = \{(h_1, h_2) \in \mathscr{P}_{\omega} : \deg(h_1) + \deg(h_2) < p\}.$$

•
$$\mathscr{W}_{\omega_1,\omega_2} = \mathscr{W}_{\omega} \cap \mathscr{P}_{\omega_1,\omega_2}.$$

Comptage naïf et asymptotique quand $n \rightarrow \infty$

$$\begin{split} & \# \mathscr{W}_{\omega_1,\omega_2} = \binom{p+1}{\omega} \text{ et } \# \mathscr{P}_{\omega_1,\omega_2} = \binom{p}{w_1} \binom{p}{w_2}. \\ & \# \mathscr{W}_{\omega} / \# \mathscr{P}_{\omega} = \frac{w}{2^w p^{c/2}} (1+o(1)) \text{ si } \frac{w^2}{2p} = c \log p + O(\sqrt{\log p/p}). \end{split}$$

Codes polaires

Comptage des Clefs faibles BDLO '16

Si
$$f = \frac{h_1}{h_2} \mod x^p - 1$$
 alors

$$x^{i-j}f = \frac{x'h_1}{x^jh_2} \mod x^p - 1$$
 pour tous i, j .

Codes polaires

Comptage des Clefs faibles BDLO '16

Si
$$f = \frac{h_1}{h_2} \mod x^p - 1$$
 alors

$$x^{i-j}f = rac{x'h_1}{x^jh_2} \mod x^p - 1$$
 pour tous i, j .

Exemple

$$p = 7$$
, $f = \frac{x + x^5}{x^2 + x^4 + x^5}$ et $x^4 f = \frac{x^2 h_1}{x^5 h_2} = \frac{1 + x^3}{1 + x^2 + x^3}$.

Comptage des Clefs faibles BDLO '16

15/31

Si
$$f = \frac{h_1}{h_2} \mod x^p - 1$$
 alors

$$x^{i-j}f = \frac{x'h_1}{x^jh_2} \mod x^p - 1$$
 pour tous i, j .

Exemple

$$p = 7$$
, $f = \frac{x + x^5}{x^2 + x^4 + x^5}$ et $x^4 f = \frac{x^2 h_1}{x^5 h_2} = \frac{1 + x^3}{1 + x^2 + x^3}$.

Une clef est attaquable si l'un de ses shifts l'est, où si le shift correspondant au mot de Lyndon associé l'est.

Combinatoire

Compte du nombre de clefs faibles

Compter $L^k(p, w)$, le nombre de mots de Lyndon de longueur p, de poids w et de plus grande plage de 0 de taille k?

Biblio

- 1961, Gilbert et Riordan comptent les mots de Lyndon de longueur *p* et poids *w*.
- Approche probabiliste de Feller et Schilling, Gordon, Waterman en 1986 sur des mots (non de Lyndon);
- Approche combinatoire de Bassino, Clément, Nicaud en 2005 mais sans fixer le poids.

Distribution

$$L^{\leqslant k}(p,w) = \frac{1}{w} \binom{w}{p-w}_k$$

où $\binom{i}{i}_{k} = [x^{i}](1 + x + \dots + x^{k})^{j}$ coefficient de Pascal-De Moivre.

Distribution

Notations

 X_{p,w_1} variable aléatoire représentant la plus grande plage de 0 d'un mot de Lyndon choisit uniformément parmi les mots de taille p et de poids w et $Y_{p,w_1,w_2} = X_{p,w_1} + X_{p,w_2}$.

$$P(Y_{p,\omega_1,\omega_2} \geqslant p-1) \sim \omega_1 \omega_2 \frac{\binom{p-1}{\omega-2}}{\binom{p-1}{\omega_1-1}\binom{p-1}{\omega_2-1}} \quad \text{quand } p \to \infty$$
(1)

Gain

$$P(Y_{p,\omega_1,\omega_2} \ge p-1) \sim \omega^2 \times \frac{\#\mathscr{W}_{\omega_1,\omega_2}}{\#\mathscr{P}_{\omega_1,\omega_2}}$$

$$\alpha \cdot \left(\sum_{i=0}^{p-1} a_i x^i\right) = \sum_{i=0}^{p-1} a_i x^{\alpha i}.$$

Cryptographie Post-Quantique 19/31

Résultats numériques

Figure : $\omega_1 + \omega_2 = \omega$.

Security	р	$\frac{\omega}{2}$	$\frac{ \mathscr{W}_{\omega} }{ \mathscr{P}_{\omega} }$	$P(Y_{p,\omega} \ge p-1)$	$P([Y_{p,\omega}] \ge p-1)$
level					
			exact value	upper bound	upper bound
80	4801 3593 3079	45 51 55	2^{-84} 2^{-96} 2^{-105}	2^{-71} 2^{-83} 2^{-91}	2^{-60} 2^{-72} 2^{-80}
128	9857 7433 6803	71 81 85	$2^{-136} \ 2^{-156} \ 2^{-164}$	$2^{-121} \ 2^{-141} \ 2^{-149}$	$2^{-109} \ 2^{-129} \ 2^{-137}$

Cryptographie Post-Quantique 19/31

Résultats numériques

Figure : $\omega_1 + \omega_2 = \omega$.

Security	р	$\frac{\omega}{2}$	$\frac{ \mathscr{W}_{\omega} }{ \mathscr{P}_{\omega} }$	$P(Y_{p,\omega} \ge p-1)$	$P([Y_{p,\omega}] \ge p-1)$
level					
			exact value	upper bound	upper bound
80	4801 3593 3079	45 51 55	2^{-84} 2^{-96} 2^{-105}	2^{-71} 2^{-83} 2^{-91}	2 ⁻⁶⁰ 2 ⁻⁷² 2 ⁻⁸⁰
128	9857 7433 6803	71 81 85	$2^{-136} \ 2^{-156} \ 2^{-164}$	$2^{-121} \ 2^{-141} \ 2^{-149}$	2^{-109} 2^{-129} 2^{-137}

- Très bonne capacité de correction.
- Algorithme de décodage efficace (Arikan 2009).
- Structure algébrique ?

litis

Cryptographie Post-Quantique 22/31

Codes polaires

Définition des codes polaires

$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}.$$

Olitis

Cryptographie Post-Quantique 22/31

٠

Codes polaires

Définition des codes polaires

$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$
$$\mathbf{G}_{m} \stackrel{\text{def}}{=} \underbrace{\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \otimes \cdots \otimes \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}}_{m \text{ times}}.$$

Définition des codes polaires

$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$
$$\mathbf{G}_{m} \stackrel{\text{def}}{=} \underbrace{\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \otimes \cdots \otimes \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}}_{m \text{ times}}.$$

- le code polaire de longueur n = 2^m et dimension k est un ensemble de k lignes déterminées de G_m.
- Le code de Reed-Muller d'ordre r, R(r,m) est le code polaire où l'on choisit les lignes de poids ≥ 2^{m-r}.

Codes polaires

Les codes polaires comme codes monomiau

Les codes de Reed-Muller peuvent être vus comme des codes d'évaluation :

•
$$\mathbf{R}_m = \mathbb{F}_2[x_0, \dots, x_{m-1}]/(x_0^2 - x_0, \dots, x_{m-1}^2 - x_{m-1}).$$

Les mots de code sont les

$$ev(g) = (g(a_0, ..., a_{m-1}))_{(a_0, ..., a_{m-1}) \in \mathbf{R}_m^m}.$$

23/31

pour $g \in \mathbf{R}_m$.

• Le code $\mathscr{R}(r,m)$ est engendré par les $\{ev(m): m \in \mathscr{M}_m\}$.

24/31

Codes polaires

Ordre monomial partiel

Définition

• On ordonne les monômes par

$$x_{i_1}\cdots x_{i_s} \preceq x_{j_1}\cdots x_{j_s}$$

ssi pour tout *I*, $i_I \leq j_I$ (avec $i_1 < \cdots < i_s$ et $j_1 < \cdots < j_s$).

 On étend par divisibilité : f ≤ g ssi il existe un diviseur g* de g de même degré que f tel que f ≤ g*.

Decreasing Monomial Code

1

Codes polaires

Decreasing Monomial Code

 $x_0 \leftarrow 1$

Decreasing Monomial Code

 $x_1 \leftarrow x_0 \leftarrow 1$

Codes polaires

Decreasing Monomial Code

Codes polaires

Decreasing Monomial Code

Codes polaires

Decreasing Monomial Code

Codes polaires

Decreasing Monomial Code

Codes polaires

Codes Monomiaux Décroissants

Ensemble décroissant

Un ensemble $I \subseteq \mathcal{M}_m$ est décroissant si

 $f \in I$ et $g \preceq f \Longrightarrow g \in I$.

Codes Monomiaux Décroissants

Ensemble décroissant

Un ensemble $I \subseteq \mathcal{M}_m$ est décroissant si

$$f \in I$$
 et $g \preceq f \Longrightarrow g \in I$.

Code monomial décroissant

- Un code linéaire d'évaluation est définit par un ensemble *I* de polynômes et vérifie 𝒞(*I*) = Vect({ev(f) | f ∈ I}).
- Si $I \subseteq \mathcal{M}_m$, on dit que le code est monomial.
- Si de plus *I* est décroissant, on dit que le code est monomial décroissant.

27/31

Codes polaires

Propriétés des codes monomiaux décroissants

Théorème (BDTO, PQcrypto 2016)

- Les codes polaires sont des codes monomiaux décroissants.
- Le dual d'un code monomial décroissant est un code monomial décroissant.
- Leur groupe de permutation contient LTA(m,2) l'ensemble des transformations affines de la forme x → Ax + b où A est une matrice triangulaire inférieure binaire avec des '1' sur la diagonale.
- On peut compter le nombre de mots de code de poids minimum.

Codes polaires

Construction d'un distingueur

Définitions (codes poinçonnés et raccourcis)

•
$$\mathscr{P}_{\mathscr{J}}(\mathscr{C}) \stackrel{\text{def}}{=} \left\{ (c_i)_{i \notin \mathscr{J}} \mid \mathbf{c} \in \mathscr{C} \right\};$$

• $\mathscr{P}_{\mathscr{J}}(\mathscr{C}) \stackrel{\text{def}}{=} \left\{ (c_i)_{i \notin \mathscr{J}} \mid \exists \mathbf{c} = (c_i)_i \in \mathscr{C} \text{ tq } \forall i \in \mathscr{J}, c_i = 0 \right\}.$

29/31

Attaque par signature

- Si r est le degré maximum d'un monôme définisant 𝒞, alors l contient x₀...x_{r-1} ∈ l.
- Le mot de code associé est de poids minimum.
- On choisit **c** un mot de code de poids minimum dans \mathscr{C}^{π} .
- On calcule une signature : (dim(𝒴_{supp(c)}(𝒴)[⊥]), 𝒴_{min}(𝒴_{supp(c)}(𝒴)[⊥]) pour déterminer les mots de 𝒴^π correspondants à x₀...x_{r-1} et ses translatés.
- On trouve la permutation sur le support de $x_0 \dots x_{r-1}$.
- On poursuit par induction pour les monômes x₀...x_i avec i ≤ r.

- Des outils mathématiques appliqués à la cryptographie.
- Codes MDPC : étendre l'attaque.
- Étude des sous-codes des codes polaires.
- Problème de l'équivalence de codes : point de vue algébrique.

30/31

Codes polaires

Cryptographie Post-Quantique

Codes polaires

Références

- M. Bardet, J. Chaulet, V. Dragoi, A. Otmani, and J.-P. Tillich, *Cryptanalysis of the McEliece Public Key Cryptosystem Based on Polar Codes*, PQCrypto 2016.
- M. Bardet, V. Dragoi, J.-G. Luque, A. Otmani, Weak Keys for the Quasi-Cyclic MDPC Public Key Encryption Scheme, Africacrypt 2016.
- M. Bardet, V. Dragoi, A. Otmani, and J.-P. Tillich, *Algebraic Properties of Polar Codes From a New Polynomial Formalism*, ISIT 2016.

31/31

