

Graph Neural Networks E. Daller, S. Bougleux, and L. Brun

April 19, 2018

Different Levels/Steps of Recognition

Level 0: Hand made classification (Expert Systems) If x > 0.3 and y < 1.5 then CANCEROUS Level 1: Design of feature vectors/(di)similarity measures. Automatic Classification

Level 2: Automatic design of pertinent features / metric from huge amount of examples.

Chemoinformatic is mainly at level 1, Image / Computer vision at level 2.

Ν	0	С	
0	0	1	

*****: NonInformative and sparse vectors not convenient for convolutions.

• First Idea : Adapt the notion of treelets

- 😌 Each vertex encodes its local configuration
- 😕 High dimensional vectors

• We do a PCA.

- Some Graph Neural Networks learn weight without taking account the structure of the graph.
- Some others take the structure of the graph into account but are limited to fixed graph structures.

How to remove this limitation ?

• We compute a super-graph by using the GED.

Computation of the super-graph

Given a trainning set {g₁,..., g_n} we compute a set of pairs (a maximal matching) minimizing:

$$M^{\star} = rg\min_{M} \sum_{(g_i,g_j) \in M} d(g_i,g_j)$$

• We then compute the super graph of each pair and so on up to the appex:

Processing of input Graphs using the Super-Graph

• Each graph of the trainning set is a subgraph of the super-graph.

• It may be considered as one (or several) signal(s) on the super-graph.

Last layer of a Graph convolutional network

- The final classification / regression stage requires a layer with a fixed geometry. Pb: Graphs does not have a fixed geometry (unless we use the super-graph)
- Usual solution : a GAP (Global average pooling). If vertices' features have dimension *D* it creates a vector *H* where:

$$\forall c \in \{1,\ldots,D\} \ H(i) = \frac{1}{|V|} \sum_{v \in V} h_c(v)$$

where h(v) is the feature vector of $v \in V$.

💛 Very rough estimate.

• We propose to compute instead a $D \times K$ pseudo-histogram where K is the number of bins per component. The height of a *bin k* of this pseudo-histogram is computed as follows:

$$b_{ck}(h) = \frac{1}{|V|} \sum_{v \in V} e^{\frac{-(h_c(v) - \mu_{ck})^2}{\sigma_{ck}^2}}$$
(1)

Experiments: The Datasets

Datasets

	_			NCI1	MUTAG	ENZYMES	PTC	PAH	
	-	#graphs		4110	188	600	344	94	
		mean $ V $, mean $ E $		(29.9, 32.3)	(17.9, 19.8)	(32.6, 62.1)	(14.3, 14.7)	(20.7, 24, 4)	
		#labels, #patterns		(37, 424)	(7, 84)	(3, 240)	(19, 269)	(1, 4)	
	-	#classes		2	2	6	2	2	
		#pos., #neg.		(2057, 2053)	(125, 63)	-	(152, 192)	(59, 35)	
•	Resu	lts :							
	GCon	v fea	t. s-g	gpool	NCI1	MUTAG	ENZYMES	PTC	PAH
		-	-	GAP	62.61	66.98	18.10	56.60	57.18
	DONN	. *	-	GAP	67.81	81.74	31.25	59.04	54.70
	DCIN	*	-	hist	71.47	82.22	38.55	60.43	66.90
		*	*	hist		83.57			71.35
		-	-	GAP	55.44	70.79	16.60	52.17	63.12
	GCN	*	-	GAP	66.39	82.22	32.36	58.43	57.80
GCI	GCN	*	-	hist	74.76	82.86	37.90	62.78	72.80
		*	*	hist		80.44		61.60	71.50
	CGCN	IN *	*	-					

- Our improvment of the first and last layers seems effective.
- We should investigate why GCN does not like the super-graph.
- Next Steps:
 - Replace the PCA in order to take into account the objective function.
 - Define a better convolution
 - Define a better coarsening.

