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Different Levels/Steps of Recognition

Level 0: Hand made classification (Expert Systems)

If x > 0.3 and y < 1.5 then CANCEROUS

Level 1: Design of feature vectors/(di)similarity measures. Automatic
Classification

Level 2: Automatic design of pertinent features / metric from huge
amount of examples.

Chemoinformatic is mainly at level 1, Image / Computer vision at level 2.
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Input Data

A usual encoding associate to an atom C the vector:

N O C . . .

0 0 1 . . .yq q : NonInformative and sparse vectors not convenient for
convolutions.

First Idea : Adapt the notion of treelets

HO C

O

OH

Pattern C–O C=O O–C–O O–C=O O C

O

O

Frequency 2 1 1 2 1yq q Each vertex encodes its local configurationyq q High dimensional vectors

We do a PCA.
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Input Graphs

Some Graph Neural Networks learn weight without taking account
the structure of the graph.

Some others take the structure of the graph into account but are
limited to fixed graph structures.

How to remove this limitation ?

We compute a super-graph by using the GED.
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Computation of the super-graph

Given a trainning set {g1, . . . , gn} we compute a set of pairs (a
maximal matching) minimizing:

M? = arg min
M

∑
(gi ,gj )∈M

d(gi , gj)

We then compute the super graph of each pair and so on up to the
appex:

SG (. . . )

g1 g2 g3 g4 g5 g6

SG (g1, g2) SG (g3, g4) SG (g5, g6)

SG (. . . )
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Processing of input Graphs using the Super-Graph

Each graph of the trainning set is a subgraph of the super-graph.

It may be considered as one (or several) signal(s) on the super-graph.
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Last layer of a Graph convolutional network

The final classification / regression stage requires a layer with a fixed
geometry. Pb: Graphs does not have a fixed geometry (unless we use
the super-graph)

Usual solution : a GAP (Global average pooling). If vertices’ features
have dimension D it creates a vector H where:

∀c ∈ {1, . . . ,D} H(i) =
1

|V |
∑
v∈V

hc(v)

where h(v) is the feature vector of v ∈ V .yq q Very rough estimate.

We propose to compute instead a D × K pseudo-histogram where K
is the number of bins per component. The height of a bin k of this
pseudo-histogram is computed as follows:

bck(h) =
1

|V |
∑
v∈V

e
−(hc (v)−µck )

2

σ2
ck (1)
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Experiments: The Datasets

Datasets
NCI1 MUTAG ENZYMES PTC PAH

#graphs 4110 188 600 344 94
mean |V |, mean |E | (29.9, 32.3) (17.9, 19.8) (32.6, 62.1) (14.3, 14.7) (20.7, 24,4)
#labels, #patterns (37, 424) (7, 84) (3, 240) (19, 269) (1, 4)

#classes 2 2 6 2 2
#pos., #neg. (2057, 2053) (125, 63) – (152, 192) (59, 35)

Results :
GConv feat. s-g gpool NCI1 MUTAG ENZYMES PTC PAH

DCNN

– – GAP 62.61 66.98 18.10 56.60 57.18
? – GAP 67.81 81.74 31.25 59.04 54.70

? – hist 71.47 82.22 38.55 60.43 66.90

? ? hist 83.57 71.35

GCN

– – GAP 55.44 70.79 16.60 52.17 63.12
? – GAP 66.39 82.22 32.36 58.43 57.80

? – hist 74.76 82.86 37.90 62.78 72.80

? ? hist 80.44 61.60 71.50
CGCNN ? ? –
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Conclusion and future Works

Our improvment of the first and last layers seems effective.

We should investigate why GCN does not like the super-graph.

Next Steps:

Replace the PCA in order to take into account the objective function.
Define a better convolution
Define a better coarsening.
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