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On the “life story” of pattern mining

At the beginning: a runtime challenge. . .
“My algorithm is faster than the previous ones” (or at least some ones. . . )

SIGKDD Explorations 2013

but, a well-known limitation:
too many results including many

non-informative patterns,
difficulty to grasp

“Is pattern mining dead or alive?”
Siegfried Nijssen, SML 2014

An up-to-date interest: from efficiency-based approaches to methods
able to extract more meaningful patterns
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Challenge: how to discover a manageable set
of high-level and useful patterns?

constraint-based pattern mining1 (Mannila at al. DMKD’97,
Ng et al. SIGMOD’98): but how to define proper constraints?
pattern condensed representations (Pasquier et al. ICDT’99, Boulicaut
et al. DMKD’03): designed to speed up the extraction, but closed/free
patterns have many uses
interestingness/statistically measures/preferences (Geng
et al. ACM Computing Survey’06, Hämäläinen et al. ICDM’08)
a small set of patterns that compress (Siebes et al. SDM’06)
pattern sets (Knobbe et al. ECML/PKDD’06, Xin et al. KDD’06),
constraint-based pattern set mining (De Raedt et al. SDM’07),
pairwise comparisons (Negrevergne et al. ICDM’13, Ugarte et al. RFIA’14)
n-ary patterns/k-pattern sets (Khiari et al. CP’10, Guns et al. TKDE’13)

global patterns (Crémilleux et al. ICCSA’08, Giacometti et al. IDEAL’09)

integrating background knowledge
In this talk: we investigate the use of user preferences based on measures

1Here “constraint” means: “focus on the most promising patterns”
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How to get useful information in pattern mining?

What about user preferences? Examples with measures:
“the higher the frequency, growth rate and aromaticity are, the
better the patterns”
“I prefer pattern X1 than pattern X2 if X1 is not dominated by
X2 according to a set of measures”

In this talk:
skyline patterns (i.e. skypatterns) are the common theme.
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Outline

What are the best patterns according to a set of measures?
a proposition: use the Pareto dominance relation
å mining skypatterns by using Constraint Programming (CP)

(and soft-skypatterns for ' free!)

What measures to keep? Keep all the measures!
å from skypatterns to skypattern cube

To sum up and perspectives
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Skypatterns
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Skypatterns: motivations

give the end-user an (easy) way to express his preferences
according to measures:

measures


constraint-based data mining : frequency , size, . . .
background knowledge: price, weight, aromaticity , . . .
statistics: entropy , pvalue, . . .

å several types of measures can be combined

avoid the threshold issue:
what is a suitable value of the minimal frequency?
å a well-known limitation in the constraint-based pattern
paradigm
combining several measures: how to fix several thresholds?

discovering patterns satisfying a global property
å Pareto dominance relation
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Skypatterns: an example
notion of skylines (database) in pattern mining (Soulet et al. ICDM’11)

Tid Items
t1 B E F
t2 B C D
t3 A E F
t4 A B C D E
t5 B C D E
t6 B C D E F
t7 A B C D E F

Patterns freq area
AB 2 4

AEF 2 6
B 6 6

BCDE 4 16
CDEF 2 8

E 6 6
...

...
...

|LI | = 26, but only 4 skypatterns

Sky(LI , {freq, area}) = {BCDE , BCD, B, E}

freq, area: constraint-based
data mining measures

Many other measures can be addressed:
background knowledge: price, aromaticity,. . .
statistics: p-value,. . .
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Skypatterns: more formally

M: a set of measures I: a set of items LI = 2I : set of patterns

Pattern (Pareto)-dominance: a pattern Xi dominates a pattern Xj
w.r.t. M denoted Xi �M Xj iff
∀m ∈ M, m(Xi) ≥ m(Xj) ∧ ∃m ∈ M, m(Xi) > m(Xj)

å a skypattern of LI w.r.t to M is a pattern not dominated in LI
w.r.t M

The skypattern operator Sky returns all the skypatterns w.r.t M:

Sky(LI ,M) = {X ∈ LI | 6 ∃Y ∈ LI : Y �M X}
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Skylines vs skypatterns

Problem Skylines Skypatterns

Mining task
a set of a set of

non dominated non dominated
transactions patterns

Size of the | T | | LI |=| 2I |space search
domain a lot of works very few works

usually: | T |<<| LI |
T set of transactions
I set of items
LI set of patterns
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Skypatterns: how to process?

A naive enumeration of all candidate patterns (LI) and then
comparing them is not feasible. . .
Two key principles:

take benefit from the pattern condensed representation
according to the condensable measures of M
(Soulet et al. DMKD’08)
å for that purpose: skylineability to obtain M ′ (M ′ ⊆ M)
giving a more concise pattern condensed representation

use of Dynamic CSP to increasingly reduce the dominance area
by processing pairwise comparisons between patterns
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Mining skypatterns using CP (1/3)
(Ugarte et al. CPAIOR’14)

1 Principle:
starting from an initial pattern s1 closed w.r.t. M ′

searching a pattern s2 not dominated by s1
searching a pattern s3 not dominated by s1 or s2
...
until there is no pattern satisfying these constraints

2 Solving:
constraints are dynamically posted during the mining step
(for each candidate si , add the constraint ¬(si �M X ))

å the dominance area is increasingly reduced thanks to the filtering.
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Mining skypatterns using CP (2/3)

Trans. Items
t1 B E F
t2 B C D
t3 A E F
t4 A B C D E
t5 B C D E
t6 B C D E F
t7 A B C D E F

| LI |= 26 = 64 patterns
4 skypatterns

ar
ea

freq
M = {freq, area}

q(X ) ≡ closedM′(X )

∧¬(s1 �M X )∧¬(s2 �M X )

Candidates =

{BCDEF︸ ︷︷ ︸
s1

, BEF︸︷︷︸
s2

, EF︸︷︷︸
s3

, }
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Mining skypatterns using CP (3/3)

To sum up: mining skypatterns is achieved in a two-step approach:

1 compute the set of solutions of the query:

query
{

q1(X ) = closedM′(X )
qi+1(X ) = qi(X ) ∧ ¬(si �M X ) where si : solution to query qi(X )

å Candidates = {s1, s2, . . . , sn}

2 remove all patterns si ∈ Candidates that are not skypatterns.

Experiments show that the number of candidates remains reasonably
small.
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From Skypatterns to Skypattern Cube
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Why the skypattern cube?

keeping all the measures is potentially useful
what happens on a skypattern set by removing/adding measures?

SkypatternCube(M) = {(Mu,Sky(LI , Mu) | Mu ⊆ M, Mu 6= ∅}
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Computing the skypattern cube
A bottom-up method in a nutshell (Ugarte et al. ECAI’14)

mining Sky(LI , {mi}) for each measure mi ∈ M

for each parent node Mu ⊆ M of the cube:
collect its skypatterns from the skypatterns of its child nodes
(i.e., derivable skypatterns)

compute on the fly the non-derivable skypatterns
å use of Dynamic CSP
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Bottom-up method for
skypattern cube: an example

M = {m1 : freq, m2 : growth-
rate, m3 : area}

Subset of M Skypattern set
{m1, m2, m3}

{ BCD , BCDE , E }

{m1, m2}

{ E }

{m1, m3}

{BCD, BCDE , B , E }

{m2, m3}

{ BCDE }

{m1}
{B, E}

{m2}
{AEF, AF, BCDE, BCDEF,
BCDF, BDE, BDEF, BDF, E,
EF, F}

{m3}
{BCDE}

In practice:
a large part of the skypatterns are collected by the derivation rules
a sufficient condition for detecting that Sky(LI , Mu) = Derived(Mu)
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Computing the skypattern cube
An approximation-based method in a nutshell
(Ugarte et al. ICTAI’14)

Key idea: use a relaxation of the skypatterns (the
edge-skypatterns)
Result: the skypatterns w.r.t. any Mu are included in the set
of the edge-skypatterns w.r.t. M
The proof is based on the monotonicity of the Edge-Sky
operator (whereas the Sky operator is not monotone).

Then, the problem can be considered as computing a skyline
cube in |M| dimensions from the edge-skypatterns w.r.t. M
Use of Orion (Raïssi et al, PVLDB 2010) to compute the closed
skyline cube.
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Bottom-up method versus approximation-based
method

bottom-up method:

an in-depth understanding of the different kinds of skypatterns:
incomparable/indistincts à Indistinct Skypattern Groups

elegant derivation rules

approximation-based method: faster. . .
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Skypattern cube: demo
https://sdmc.greyc.fr/skypattern/ (P. Holat)

Iris data set: d0 = freq, d1 = max(val), d2 = mean(val), d3 = area, d4 = gr 1
Concise representation of the cube:
å equivalence classes on measures highlight the role of measures
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To sum up and perspectives
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Lessons (1/2)
Interestingness of the CP framework

declarative side of the CP: introducing softness is “easy”:
changing the dominance relation à soft-skypatterns
soft threshold constraints (Ugarte et al. DS’12)
top-k with soft threshold constraints (Ugarte et al. JIIS’13)
softness can also be useful for mining crisp patterns
(cf. the cube approximation-based method)

Dynamic CSP are a precious tool to implement:
pairwise comparisons (cf. the skypattern example)
on the fly computing (cf. the mining of non-derivable
skypatterns with the cube bottom-up method)
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Lessons (2/2)
Why softness? - Introducing softness is easy with CP

Stringent aspect of the classical constraint-based pattern mining
framework: what about a pattern which slightly violates the query?

å introducing softness in the skypattern mining: soft-skypatterns

δ-dominance: a pattern Xi δ-dominates another pattern Xj w.r.t M,
denoted by Xi �δ

M Xj , iff ∀m ∈ M, (1− δ)×m(Xi) > m(Xj)

Same process: it is enough to update the posted constraints
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Local patterns, pattern sets and more?

reminder our challenge: how to discover a manageable set of
high-level and useful patterns?
å a general avenue: from local patterns to sets of patterns
(i.e., find useful and interrelated sets of patterns)

local patterns (LI)

pattern sets (e.g., skypatterns) (2LI)

future?
interest in sets of pattern sets (e.g., skypattern cube) (22LI )
vizualization methods will be helpful to go within sets of pattern
sets. A novel use of the lattice structure and methods/tools
such as Camelis (Ferré J. General Sys. 2009)?
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Perspectives within NormaSTIC?

optimization in data mining, interactive knowledge discovery:
IVISEA project (A. Knippel and A. Pauchet)

sequence mining: sports analytics: cf. Alexandre’s talk

CP as a backbone for graph mining?
chemoinformatics: L. Brun, B. Cuissart, M. Léonard, T. Lecrocq
First approach: items to encode molecular fragments
(cf. Willy’s work)
graphs in bioinformatics and geomatics: cf. Géraldine’s talk
graphs in text analysis: S. Darmoni?, A. Widlöcher?

å something to do with the graph working group?

sequence mining for image representation in computer vision,
image clustering by combining patterns and topics
(F. Jurie?, L. Heutte?,. . . )

. . .
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