

COMPUTING SIMILARITY BETWEEN PHARMACOPHORES USING GRAPH EDIT DISTANCES

Nhat-Vinh Vo ‡ Bertrand Cuissart ‡ Ronan Bureau † Alban Lepailleur †

‡ GREYC – FR CNRS UMR 6072 † CERMN – UPRES EA 4258 – FR CNRS 3038 INC3M firstname.lastname@unicaen.fr

May 3, 2019

AGAC Analyse de Graphes Appliquée à la Chémoinformatique Financial support from the Normandy region

- Context
- Objective and Principle
- Implementation
 - Preliminary implementation
 - Deviation
- Conclusion and Perspective.

Context

Context Objective and Principle Implementation Conclusion and Perspective

Terminologies:

- Ligand: an organic molecule that binds with a biomolecule
- Target: a part of the organism to which a ligand binds, producing a change of behaviour. Proteins is a common class of targets.
- Pharmacophore: a part of a molecular structure that is responsible for a particular biological or pharmacological interaction that it undergoes.

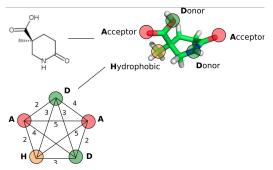


Figure : A ligand-pharmacophore model [Kutlushina et al., 2018]

Context Objective and Principle Implementation Conclusion and Perspective

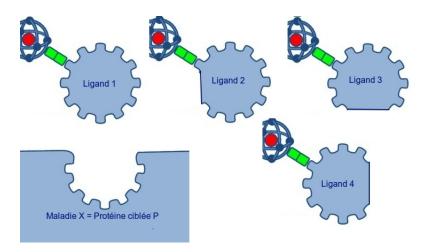


Figure : Ligand-Target Model.

Given a set of studied ligands and their biological profiles/bioactivity (to a target) → Predict the potential bioactivity of ligand of which the biological profile is currently unknown.

- Compute similarity between studied ligands
- Elaborate a mechanism for a supervised classification
- Apply the supervised classification to the candidate ligand of which the bioactivity has not been known yet.

Implementation

Context Objective and Principle Implementation Conclusion and Perspective

- Preliminary implementation
- Deviation.

- Compute similarity between ligands using Graph Edit Distance (GED)
- Compute Graph Edit Distance using a Branch-and-Bound procedure [Abu-Aisheh et al., 2017]
- Apply GED to 1492 ligands (from 8 to 13 vertex) from a ligand set for ABL-target
 - \longrightarrow It exists instances without any optimality within 10 computation minutes

 \longrightarrow Size of graph should be reduced by using sub-parts of ligands which are responsible for pharmacological interactions.

Preliminary implementation

Context Objective and Principle Implementation Conclusion and Perspective

Example: H-H-H-4-3-3 vs. A-H-H-H-4-3-3-4-7-8

- → Assumption: good cost configuration
- \rightarrow 3 Node substitutions and 1 Node insertion: $3! \times 4 = 24$ possibilities
 - 1 Node substitution: $H \rightarrow A$
 - 1 Node insertion: H
 - 3 Edge insertions: A-H (3); H-H (7); H-H (8)
 - 3 Edge substitutions: H-H (4) \rightarrow A-H (4); H-H (3) \rightarrow H-H (4); H-H (3) \rightarrow A-H (3).

Deviation

Context Objective and Principle Implementation Conclusion and Perspective

- Apply **Norns** (by projet Minomics) to the dataset to extract a space of pharmacophores which satisfy the following constraints [*Métivier et al., 2018*]:
 - Size of graph: from 1 to 6 vertex
 - Support/Frequency: at least 10
 - Growth Rate: used to classify pharmacophores
 - With and without MMRFS algorithm
 - \rightarrow Without MMRFS (S_1): 87175 pharmacophores
 - \rightarrow With MMRFS (S₂): 137 pharmacophores
- Edit Cost Configuration:
 - Node Deletion/Insertion: 6
 - Node Substitution: 10
 - Edge Deletion/Insertion: 0
 - Edge Substitution: *difference*(edge1,edge2)
 - \longrightarrow Computation time for GED: 0.5 second

Representation processing

Context Objective and Principle Implementation Conclusion and Perspective

- From viewpoint of pharmacophores in S_1 :
 - Compute GED between 2 pharmacophores in S_2 and all pharmacophores in S_1
 - Represent the nearest pharmacophores in S_1 to the 2 pharmacophores in S_2

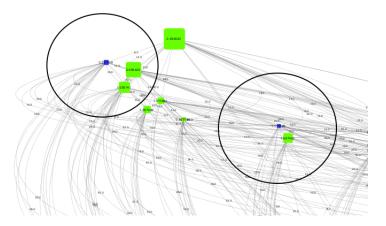


Figure : An example of representation processing usind GED.

N-V. VO (GREYC)

May 3, 2019 11 / 13

- From viewpoint of each candidate ligand with currently unknown biological profile:
 - \bullet Compute GED between all pharmacophores in S_2 belonging to the ligand and all pharmacophores in S_1
 - Predict the bioactivity of the candidate ligand using profiles of the nearest pharmacophores.

- Use GED as similarity between ligands and between pharmacophores
- Apply a Branch-and-Bound procedure to GED computation

 → Is there any better way for an exact solution?
- Use the nearest neighbours to represent pharmacophores and to predict the bioactivity of the candidate ligand
 - \longrightarrow Is there any better way for a prediction with relational values?