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Motivation of this work 
•  VF2 is a general-purpose graph isomorphism and 

subgraph isomorphism algorithm [Cordella et al. 2004] 

•  At the time of its publication, one of the fastest 

algorithms 

•  But, on graphs from biological databases, several newer 

algorithm are able to outperform it 



Motivation of this work 

•  We have devised an improved version of the algorithm, 

first presented at GbR2015, aimed at biological 

databases 

•  We are also testing this improved algorithm on graph 

models that are typically found in Social Network 

Analysis  
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(Edge induced) Subgraph isomorphism  
(aka Monomorphism) 
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(the target graph may contain extra edges between mapped 
nodes) 



The VF2 algorithm 
�  The problem is formulated in terms of State Space 

Representation, where each state represents a partial 
mapping solution. 

�  A generic matching algorithm based on SSR can be 
represented as the search over a state graph, where 
the edges are the addition of a pair of nodes to an 
existing partial solution 

�  If only consistent partial solutions are generated, then 
each state covering the whole pattern is a valid 
solution to the problem 
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State Space search 

�  If we are sure that the search space is a 
tree, then 
○  The search space does not need to be entirely 

stored in memory while it is being explored if the 
tree is visited Depth First 

○  No need to check if a state has already been 
visited… 

○  … thus the algorithm is much more efficient! 
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Pruning the State Space 

S2 and S4 are consistent states, 
but it can be shown that no 
solution can be derived from 
them… 
If the algorithm can prune states 
like them in advance, it can 
save a lot of time, 



An algorithm based on SSR 
•  How the next candidate pair is chosen? 

–  This choice must ensure that the state space is a tree 

–  The choice also impacts on the number of states 

needed to reach a solution 

•  How the unfruitful states are pruned? 

–  A good pruning criterion can greatly reduce the number 

of states 

– … but beware: the criterion should be fast to compute! 
Matching time = Number of states  *  Time spent on each state 



Basic ideas of VF2 

•  For generating next states: 
–  At each state, the algorithm keeps the so called Terminal sets: 

•  Tin : set of nodes that have an edge going into a node already mapped 

•  Tout: set of nodes that have an edge coming out of a node already mapped 

–  For the pattern, the node in Tout with the smallest id is chosen; 

for the target, all nodes in Tout are chosen 

•  (Unless Tout is empty; if it is, Tin is used instead) 

–  Tin and Tout are built “incrementally” when visiting the state tree 



Terminal sets 
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Basic ideas of VF2 
•  For pruning the states: 

–  Rules that check arc consistency (Rpred/Rsucc) and label 

compatibility 

–  Rules that check the cardinality of the intersections of the 

predecessors/successors of a node with Tin/Tout (Rterm), giving 

a “1-step” look-ahead 

–  Rules that check the cardinality of the difference between 

predecessors/successor of a node and Tin/Tout (“2-steps” look-

ahead) 



Pruning example 
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Consider the pair (3, D) 
Pred(3) ∩ Tin(s1) = {4} 
Pred(D) ∩ Tin(s1) = {} 
Since Card({4}) > Card({}), 
the pair can be excluded 



Limits of VF2 

�  Label information, that is usually available in 
real world examples, is not used neither for 
choosing the visit order nor for lookahead (it is 
only used for checking consistency) 

�  The choice of the next candidate does not 
attempt to choose earlier a candidate with 
more constraints (so as to maximize the effect 
of pruning)  

 



VF3: the proposed improvement 

�  We change the order of visit of the state 
space by taking into account both the labels 
and the constraints relative to each node 

�  We extend the look-ahead rules so as to take 
into account labels and possibly other 
information (e.g. about structure) 

 



First improvement: node reordering 
•  Before starting the matching, the nodes in the pattern are 

reordered by taking the following factors into account: 

–  Number of edges connecting the node to the previous ones 

•  Each edge will introduce a “constraint” during the matching; putting nodes 

with more constraints first is a heuristic commonly used in Constraint 

Satisfaction literature 

–  Frequency of occurrence of the label among the nodes in the target 

–  Frequency of occurrence of nodes with a compatible valence in the 

target 

•  Thus, the nodes in the least repetitive parts of the target are tried first 

VF2 Plus 3

tent with the constraints of the problem we are facing. Hence, the search space
is explored using a depth-first strategy with backtracking, driven by a set of
feasibility rules to prune, in advance, unfruitful search paths.

In order to provide more details, let us introduce some notations that will
be used in the following. Let be G1 = (V1, E1) the pattern graph (Figure 1(a)),
and G2 = (V2, E2) the target graph (Figure 1(b)), being V1, V2 and E1, E2 re-
spectively the vertices and the edges sets of each graph. Let us define the size
of the two graphs as the number of the nodes inside the sets V1 and V2, so that
|G1| = |V1| and |G2| = |V2|.
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(b) Target Graph G2

Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out

2 (s) for these connected by outgoing edges.
Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the

sets �N1(s), �N2(s) that contain remaining vertices of G1 and G2, not in the core
or in the terminal sets:
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First improvement: node reordering 

•  This reordering of the pattern nodes can be done before the 

matching starts, for a scenario of searching one pattern 

against multiple targets 

•  We have also modified the algorithm to precompute the Tin1 

and Tout1 set for each state (they only depend on the “depth” 

of the state in the state tree) 
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Second improvement:  
terminal set partitioning 

•  The nodes are divided into equivalence classes 

constructed so that two nodes that may be matched 

must be in the same class 

–  In the simplest case, the node label is used for 

defining the classes 

–  For graph isomorphism also other information can be 

included (e.g. node valence) 
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Graphs in Biological applications 
•  Several biological data can be meaningfully represented by 

graphs 

–  Molecules 

–  Protein structures 

–  Protein contact maps 

–  Interaction networks 

–  … 



Graphs in Biological applications 
•  Graphs in Biological applications have some common traits: 

–  Large to very large (up to tens of thousands of nodes) 

–  Usually very sparse 

–  Labels from a small set (e.g. elements, amino acids etc.) 

–  Presence of highly repetitive substructures  

 



Experimental evaluation 
•  We have used a subset of the database of the 

ICPR2014 contest on Graph Matching for 

Pattern Search in Biological Database 

–  Contact Maps 

–  Protein structures 

•  We have compared VF3 with VF2 and with three 

recent algorithms participating to the contest: RI, 

LAD and L2G 
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and G2 = (V2, E2) the target graph (Figure 1(b)), being V1, V2 and E1, E2 re-
spectively the vertices and the edges sets of each graph. Let us define the size
of the two graphs as the number of the nodes inside the sets V1 and V2, so that
|G1| = |V1| and |G2| = |V2|.
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(b) Target Graph G2

Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out

2 (s) for these connected by outgoing edges.
Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the

sets �N1(s), �N2(s) that contain remaining vertices of G1 and G2, not in the core
or in the terminal sets:

VF2 Plus 3
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be used in the following. Let be G1 = (V1, E1) the pattern graph (Figure 1(a)),
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Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out

2 (s) for these connected by outgoing edges.
Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the

sets �N1(s), �N2(s) that contain remaining vertices of G1 and G2, not in the core
or in the terminal sets:
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tent with the constraints of the problem we are facing. Hence, the search space
is explored using a depth-first strategy with backtracking, driven by a set of
feasibility rules to prune, in advance, unfruitful search paths.

In order to provide more details, let us introduce some notations that will
be used in the following. Let be G1 = (V1, E1) the pattern graph (Figure 1(a)),
and G2 = (V2, E2) the target graph (Figure 1(b)), being V1, V2 and E1, E2 re-
spectively the vertices and the edges sets of each graph. Let us define the size
of the two graphs as the number of the nodes inside the sets V1 and V2, so that
|G1| = |V1| and |G2| = |V2|.
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(b) Target Graph G2

Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out

2 (s) for these connected by outgoing edges.
Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the

sets �N1(s), �N2(s) that contain remaining vertices of G1 and G2, not in the core
or in the terminal sets:

VF2 Plus 3

tent with the constraints of the problem we are facing. Hence, the search space
is explored using a depth-first strategy with backtracking, driven by a set of
feasibility rules to prune, in advance, unfruitful search paths.

In order to provide more details, let us introduce some notations that will
be used in the following. Let be G1 = (V1, E1) the pattern graph (Figure 1(a)),
and G2 = (V2, E2) the target graph (Figure 1(b)), being V1, V2 and E1, E2 re-
spectively the vertices and the edges sets of each graph. Let us define the size
of the two graphs as the number of the nodes inside the sets V1 and V2, so that
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Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out

2 (s) for these connected by outgoing edges.
Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the

sets �N1(s), �N2(s) that contain remaining vertices of G1 and G2, not in the core
or in the terminal sets:

VF2 Plus 3
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is explored using a depth-first strategy with backtracking, driven by a set of
feasibility rules to prune, in advance, unfruitful search paths.
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Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out

2 (s) for these connected by outgoing edges.
Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the

sets �N1(s), �N2(s) that contain remaining vertices of G1 and G2, not in the core
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Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out

2 (s) for these connected by outgoing edges.
Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the

sets �N1(s), �N2(s) that contain remaining vertices of G1 and G2, not in the core
or in the terminal sets:
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has been increased by reducing the variability of the labels; we called this dataset

Reduced Labels. The protein dataset is composed of very large and sparse graphs

from 500 to 10000 nodes, with average degree of 4; while the contact maps dataset

contains medium size and dense graphs from 150 to 800 nodes and average degree

of 20. In the original version the two datasets presents respectively 6 and 20

different labels, but in the modified version the variability of the labels has been

reduced to 4 and 7.

(a) Proteins (b) Proteins Reduced Labels

(c) Contact Maps (d) Contact Maps Reduced Labels

Fig. 4. Time in seconds to find all matchings on the four considered datasets.

As shown in Figure 4, VF2 Plus always outperforms VF2, LAD and L2G.

Especially on very large and sparse graphs the difference, between VF2 and

VF2 Plus, is more than two order of magnitude on the time to find all the

solutions. Furthermore, the Table 1 shows that VF2 Plus most often equals RI,

the algorithm winner of the International Contest on Pattern Search in Biological

Databases. Indeed, in several cases, the gap between VF2 Plus and RI is less then

the 10% on the matching time (Table 1). However, VF2 Plus performs better

than RI for very large and sparse graphs when the number of solutions increases

(Figure 4(b)) and for dense medium graphs when the number of label is higher
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tent with the constraints of the problem we are facing. Hence, the search space
is explored using a depth-first strategy with backtracking, driven by a set of
feasibility rules to prune, in advance, unfruitful search paths.

In order to provide more details, let us introduce some notations that will
be used in the following. Let be G1 = (V1, E1) the pattern graph (Figure 1(a)),
and G2 = (V2, E2) the target graph (Figure 1(b)), being V1, V2 and E1, E2 re-
spectively the vertices and the edges sets of each graph. Let us define the size
of the two graphs as the number of the nodes inside the sets V1 and V2, so that
|G1| = |V1| and |G2| = |V2|.
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Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out

2 (s) for these connected by outgoing edges.
Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the

sets �N1(s), �N2(s) that contain remaining vertices of G1 and G2, not in the core
or in the terminal sets:

VF2 Plus 3
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In order to provide more details, let us introduce some notations that will
be used in the following. Let be G1 = (V1, E1) the pattern graph (Figure 1(a)),
and G2 = (V2, E2) the target graph (Figure 1(b)), being V1, V2 and E1, E2 re-
spectively the vertices and the edges sets of each graph. Let us define the size
of the two graphs as the number of the nodes inside the sets V1 and V2, so that
|G1| = |V1| and |G2| = |V2|.
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Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out

2 (s) for these connected by outgoing edges.
Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the

sets �N1(s), �N2(s) that contain remaining vertices of G1 and G2, not in the core
or in the terminal sets:
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Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in
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Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the
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Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out
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Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the
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has been increased by reducing the variability of the labels; we called this dataset

Reduced Labels. The protein dataset is composed of very large and sparse graphs

from 500 to 10000 nodes, with average degree of 4; while the contact maps dataset

contains medium size and dense graphs from 150 to 800 nodes and average degree

of 20. In the original version the two datasets presents respectively 6 and 20

different labels, but in the modified version the variability of the labels has been

reduced to 4 and 7.

(a) Proteins (b) Proteins Reduced Labels

(c) Contact Maps (d) Contact Maps Reduced Labels

Fig. 4. Time in seconds to find all matchings on the four considered datasets.

As shown in Figure 4, VF2 Plus always outperforms VF2, LAD and L2G.

Especially on very large and sparse graphs the difference, between VF2 and

VF2 Plus, is more than two order of magnitude on the time to find all the

solutions. Furthermore, the Table 1 shows that VF2 Plus most often equals RI,

the algorithm winner of the International Contest on Pattern Search in Biological

Databases. Indeed, in several cases, the gap between VF2 Plus and RI is less then

the 10% on the matching time (Table 1). However, VF2 Plus performs better

than RI for very large and sparse graphs when the number of solutions increases

(Figure 4(b)) and for dense medium graphs when the number of label is higher
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•  In order to check the dependency of the 

algorithm on the number of different labels, we 

have repeated the experiments by artificially 

reducing the label diversity in the graphs 
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tent with the constraints of the problem we are facing. Hence, the search space
is explored using a depth-first strategy with backtracking, driven by a set of
feasibility rules to prune, in advance, unfruitful search paths.

In order to provide more details, let us introduce some notations that will
be used in the following. Let be G1 = (V1, E1) the pattern graph (Figure 1(a)),
and G2 = (V2, E2) the target graph (Figure 1(b)), being V1, V2 and E1, E2 re-
spectively the vertices and the edges sets of each graph. Let us define the size
of the two graphs as the number of the nodes inside the sets V1 and V2, so that
|G1| = |V1| and |G2| = |V2|.
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(b) Target Graph G2

Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out

2 (s) for these connected by outgoing edges.
Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the

sets �N1(s), �N2(s) that contain remaining vertices of G1 and G2, not in the core
or in the terminal sets:

VF2 Plus 3

tent with the constraints of the problem we are facing. Hence, the search space
is explored using a depth-first strategy with backtracking, driven by a set of
feasibility rules to prune, in advance, unfruitful search paths.

In order to provide more details, let us introduce some notations that will
be used in the following. Let be G1 = (V1, E1) the pattern graph (Figure 1(a)),
and G2 = (V2, E2) the target graph (Figure 1(b)), being V1, V2 and E1, E2 re-
spectively the vertices and the edges sets of each graph. Let us define the size
of the two graphs as the number of the nodes inside the sets V1 and V2, so that
|G1| = |V1| and |G2| = |V2|.

O
S

O

C

H

1

2

3

4

5

(a) Pattern
Graph G1

O
S

O

C

H

H

O

O

H

H

C

C

1 2

3 4

5

6
7

8

9 10

11

12

(b) Target Graph G2

Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out

2 (s) for these connected by outgoing edges.
Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the

sets �N1(s), �N2(s) that contain remaining vertices of G1 and G2, not in the core
or in the terminal sets:

VF2 Plus 3

tent with the constraints of the problem we are facing. Hence, the search space
is explored using a depth-first strategy with backtracking, driven by a set of
feasibility rules to prune, in advance, unfruitful search paths.

In order to provide more details, let us introduce some notations that will
be used in the following. Let be G1 = (V1, E1) the pattern graph (Figure 1(a)),
and G2 = (V2, E2) the target graph (Figure 1(b)), being V1, V2 and E1, E2 re-
spectively the vertices and the edges sets of each graph. Let us define the size
of the two graphs as the number of the nodes inside the sets V1 and V2, so that
|G1| = |V1| and |G2| = |V2|.

O
S

O

C

H

1

2

3

4

5

(a) Pattern
Graph G1

O
S

O

C

H

H

O

O

H

H

C

C

1 2

3 4

5

6
7

8

9 10

11

12

(b) Target Graph G2

Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out

2 (s) for these connected by outgoing edges.
Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the

sets �N1(s), �N2(s) that contain remaining vertices of G1 and G2, not in the core
or in the terminal sets:

VF2 Plus 3

tent with the constraints of the problem we are facing. Hence, the search space
is explored using a depth-first strategy with backtracking, driven by a set of
feasibility rules to prune, in advance, unfruitful search paths.

In order to provide more details, let us introduce some notations that will
be used in the following. Let be G1 = (V1, E1) the pattern graph (Figure 1(a)),
and G2 = (V2, E2) the target graph (Figure 1(b)), being V1, V2 and E1, E2 re-
spectively the vertices and the edges sets of each graph. Let us define the size
of the two graphs as the number of the nodes inside the sets V1 and V2, so that
|G1| = |V1| and |G2| = |V2|.

O
S

O

C

H

1

2

3

4

5

(a) Pattern
Graph G1

O
S

O

C

H

H

O

O

H

H

C

C

1 2

3 4

5

6
7

8

9 10

11

12

(b) Target Graph G2

Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out

2 (s) for these connected by outgoing edges.
Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the

sets �N1(s), �N2(s) that contain remaining vertices of G1 and G2, not in the core
or in the terminal sets:



Contact maps – reduced labels 

VF2 Plus 3

tent with the constraints of the problem we are facing. Hence, the search space
is explored using a depth-first strategy with backtracking, driven by a set of
feasibility rules to prune, in advance, unfruitful search paths.

In order to provide more details, let us introduce some notations that will
be used in the following. Let be G1 = (V1, E1) the pattern graph (Figure 1(a)),
and G2 = (V2, E2) the target graph (Figure 1(b)), being V1, V2 and E1, E2 re-
spectively the vertices and the edges sets of each graph. Let us define the size
of the two graphs as the number of the nodes inside the sets V1 and V2, so that
|G1| = |V1| and |G2| = |V2|.

O
S

O

C

H

1

2

3

4

5

(a) Pattern
Graph G1

O
S

O

C

H

H

O

O

H

H

C

C

1 2

3 4

5

6
7

8

9 10

11

12

(b) Target Graph G2

Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out

2 (s) for these connected by outgoing edges.
Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the

sets �N1(s), �N2(s) that contain remaining vertices of G1 and G2, not in the core
or in the terminal sets:

VF2 Plus 3

tent with the constraints of the problem we are facing. Hence, the search space
is explored using a depth-first strategy with backtracking, driven by a set of
feasibility rules to prune, in advance, unfruitful search paths.

In order to provide more details, let us introduce some notations that will
be used in the following. Let be G1 = (V1, E1) the pattern graph (Figure 1(a)),
and G2 = (V2, E2) the target graph (Figure 1(b)), being V1, V2 and E1, E2 re-
spectively the vertices and the edges sets of each graph. Let us define the size
of the two graphs as the number of the nodes inside the sets V1 and V2, so that
|G1| = |V1| and |G2| = |V2|.

O
S

O

C

H

1

2

3

4

5

(a) Pattern
Graph G1

O
S

O

C

H

H

O

O

H

H

C

C

1 2

3 4

5

6
7

8

9 10

11

12

(b) Target Graph G2

Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out

2 (s) for these connected by outgoing edges.
Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the

sets �N1(s), �N2(s) that contain remaining vertices of G1 and G2, not in the core
or in the terminal sets:

VF2 Plus 3

tent with the constraints of the problem we are facing. Hence, the search space
is explored using a depth-first strategy with backtracking, driven by a set of
feasibility rules to prune, in advance, unfruitful search paths.

In order to provide more details, let us introduce some notations that will
be used in the following. Let be G1 = (V1, E1) the pattern graph (Figure 1(a)),
and G2 = (V2, E2) the target graph (Figure 1(b)), being V1, V2 and E1, E2 re-
spectively the vertices and the edges sets of each graph. Let us define the size
of the two graphs as the number of the nodes inside the sets V1 and V2, so that
|G1| = |V1| and |G2| = |V2|.

O
S

O

C

H

1

2

3

4

5

(a) Pattern
Graph G1

O
S

O

C

H

H

O

O

H

H

C

C

1 2

3 4

5

6
7

8

9 10

11

12

(b) Target Graph G2

Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out

2 (s) for these connected by outgoing edges.
Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the

sets �N1(s), �N2(s) that contain remaining vertices of G1 and G2, not in the core
or in the terminal sets:

VF2 Plus 3

tent with the constraints of the problem we are facing. Hence, the search space
is explored using a depth-first strategy with backtracking, driven by a set of
feasibility rules to prune, in advance, unfruitful search paths.

In order to provide more details, let us introduce some notations that will
be used in the following. Let be G1 = (V1, E1) the pattern graph (Figure 1(a)),
and G2 = (V2, E2) the target graph (Figure 1(b)), being V1, V2 and E1, E2 re-
spectively the vertices and the edges sets of each graph. Let us define the size
of the two graphs as the number of the nodes inside the sets V1 and V2, so that
|G1| = |V1| and |G2| = |V2|.

O
S

O

C

H

1

2

3

4

5

(a) Pattern
Graph G1

O
S

O

C

H

H

O

O

H

H

C

C

1 2

3 4

5

6
7

8

9 10

11

12

(b) Target Graph G2

Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.
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Social network analysis 

Social networks can be modeled as graphs 

The node denotes 
a person 

The edge indicates a relationship 
between the persons 



The problem: a few examples 
�  Equivalent actors occupy indistinguishable 

structural locations in a network. Structural 
location can be defined in terms of sub graph 
isomorphism. 

�  Frequent sub graph allows to discover 
frequent substructures  
�  generate frequent substructure candidates;  
�  process the generated candidate sub graphs so as 

to identify the desired frequent sub graphs by sub 
graph isomorphism). 



Experimental Results 

� DATASET: a synthetic dataset has been 
generated according to two well known 
models of complex networks: 
�  Small World networks 
�  Scale Free networks 

�  It has been shown (*) that such models 
approximate very well the characteristics 
of social networks. 

 (*) S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, 
 Complex networks: Structure and dynamics, Physics Reports, 2006 



Small World networks 

� Even though most pairs of nodes are not 
directly connected, there is an upper 
bound to the number of steps connecting 
any two nodes: 

� D(n1,n2) ≤ c*log(N) 

� E.g. the theory about six degrees of 
separation between any two persons 



Scale Free networks 

�  The degrees of the nodes are not 
uniformly distributed. There are many 
nodes with low degree and few nodes 
with high degree. 

� More formally, if we sort the nodes 
according to their degree, the k-th node 
will have a degree: 

�  dk = c*e-λ*k 



Experimental Results 
Small word networks (256 labels) 
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Conclusions 

�  The improved VF3 is considerably faster 
then the original algorithm 

� On both biological graphs and social 
network graphs it keeps a good 
performance (even when it is not the best, 
it is close to the best) 

�  It has a higher percentage of matchings 
completed before the timeout 




