
Graph matching
for biological databases
and social network data

Pasquale Foggia <pfoggia@unisa.it>

DIEM
University of Salerno – Italy

Machine Intelligence lab for Video, Image and Audio processing

Journée graphes – October 1st, 2015 – Rouen

Outline

•  Motivation of this work

•  The VF2 algorithm

•  Improvements to the VF2 algorithms

•  Experimentation on biological graphs

•  Experimentation on social network graphs

•  Conclusions

Motivation of this work
•  VF2 is a general-purpose graph isomorphism and

subgraph isomorphism algorithm [Cordella et al. 2004]

•  At the time of its publication, one of the fastest

algorithms

•  But, on graphs from biological databases, several newer

algorithm are able to outperform it

Motivation of this work

•  We have devised an improved version of the algorithm,

first presented at GbR2015, aimed at biological

databases

•  We are also testing this improved algorithm on graph

models that are typically found in Social Network

Analysis

(Node induced) Subgraph isomorphism

2 3

4 1 2

1 4

3

2

3 1 2 1

3

Pattern graph Target graph

(Node induced) Subgraph isomorphism

2 3

4 1 2

1 4

3

2

3 1 2 1

3

Pattern graph Target graph

(Edge induced) Subgraph isomorphism
(aka Monomorphism)

2 3

4 1 2

1 4

3

2

3 1 2 1

3

Pattern graph Target graph

(the target graph may contain extra edges between mapped
nodes)

The VF2 algorithm
�  The problem is formulated in terms of State Space

Representation, where each state represents a partial
mapping solution.

�  A generic matching algorithm based on SSR can be
represented as the search over a state graph, where
the edges are the addition of a pair of nodes to an
existing partial solution

�  If only consistent partial solutions are generated, then
each state covering the whole pattern is a valid
solution to the problem

State Space Representation

2 3

4 1

A D

C B 1

A

M(s0) = {}
s0 s0 Initial state

Pattern graph Target graph

Partial mapping of
the initial state

State Space Representation

2 3

4 1

A D

C B 1

A

M(s1) = {(1,A)}
M(s0) = {}

s0 s0

s1

State Space Representation

2 3

4 1

A D

C B 1 B

M(s1) = {(1,A)}
M(s0) = {0}

M(s2) = {(1,B)}

s0

s1

s0

s2

State Space Representation

2 3

4 1

A D

C B 1 C

M(s1) = {(1,A)}
M(s0) = {0}

M(s2) = {(1,B)}
M(s3) = {(1,C)}

s0

s1 s2

s0

s3

2 3

4 1

A D

C B 1

D

M(s1) = {(1,A)}
M(s0) = {0}

M(s2) = {(1,B)}
M(s3) = {(1,C)}
M(s4) = {(1,D)}

s0

s1 s2 s3

s0

s4

State Space Representation

State Space Representation

2 3

4 1

A D

C B 1

A 2

B

M(s1) = {(1,A)}
M(s0) = {0}

M(s2) = {(1,B)}
M(s3) = {(1,C)}
M(s4) = {(1,D)}

M(s5) = {(1,A) , (2,B)}

s0

s1 s2 s3 s4

s0

s1

s5

State Space Representation

2 3

4 1

A D

C B 1

A 2

C

M(s1) = {(1,A)}
M(s0) = {0}

M(s2) = {(1,B)}
M(s3) = {(1,C)}
M(s4) = {(1,D)}

M(s5) = {(1,A) , (2,B)}
M(s6) = {(1,A) , (2,C)}

s0

s1 s2 s3 s4

s5

s0

s1

s6

State Space Representation

2 3

4 1

A D

C B 1

A 2

C

M(s1) = {(1,A)}
M(s0) = {0}

M(s2) = {(1,B)}
M(s3) = {(1,C)}
M(s4) = {(1,D)}

M(s5) = {(1,A) , (2,B)}
M(s6) = {(1,A) , (2,C)}

s0

s1 s2 s3 s4

s5

s0

s1

s6
The partial solution s6 is inconsistent!

State Space Representation

2 3

4 1

A D

C B 1

A 2 D

M(s1) = {(1,A)}
M(s0) = {0}

M(s2) = {(1,B)}
M(s3) = {(1,C)}
M(s4) = {(1,D)}

M(s5) = {(1,A) , (2,B)}
M(s6) = {(1,A) , (2,C)}
M(s7) = {(1,A) , (2,D)}

s0

s1 s2 s3 s4

s5 s6

s0

s1

s7

State Space Representation

2 3

4 1

A D

C B 1

A 2

B

3

C

M(s1) = {(1,A)}
M(s0) = {0}

M(s2) = {(1,B)}
M(s3) = {(1,C)}
M(s4) = {(1,D)}

M(s5) = {(1,A) , (2,B)}
M(s6) = {(1,A) , (2,C)}
M(s8) = {(1,A) , (2,B),
 (3,C)}

s0

s1 s2 s3 s4

s5 s6 s7

s0

s1

s5 …

s8

State Space Representation

2 3

4 1

A D

C B 1

A 2

B

3

M(s1) = {(1,A)}
M(s0) = {0}

M(s2) = {(1,B)}
M(s3) = {(1,C)}
M(s4) = {(1,D)}

M(s5) = {(1,A) , (2,B)}
M(s6) = {(1,A) , (2,C)}
M(s9) = {(1,A) , (2,B),
 (3,D)}

s0

s1 s2 s3 s4

s5 s6 s7

s0

s1

s5 …

s8 s9 D

State Space Representation

2 3

4 1

A D

C B 1

A 2

B

3

C 4

D

M(s1) = {(1,A)}
M(s0) = {0}

M(s2) = {(1,B)}
M(s3) = {(1,C)}
M(s4) = {(1,D)}

M(s5) = {(1,A) , (2,B)}
M(s6) = {(1,A) , (2,C)}

M(s10) = {(1,A) , (2,B) , (3,C) , (4,D)}
…

s0

s1 s2 s3 s4

s5 s6 s7

s8 s9

s10

s0

s1

s5

s8

s10

State Space search

�  If we are sure that the search space is a
tree, then
○  The search space does not need to be entirely

stored in memory while it is being explored if the
tree is visited Depth First

○  No need to check if a state has already been
visited…

○  … thus the algorithm is much more efficient!

2 3

4 1

A D

C B 1

D

M(s1) = {(1,A)}
M(s0) = {0}

M(s2) = {(1,B)}
M(s3) = {(1,C)}
M(s4) = {(1,D)}

s0

s1 s2 s3

s0

s4

Pruning the State Space

S2 and S4 are consistent states,
but it can be shown that no
solution can be derived from
them…
If the algorithm can prune states
like them in advance, it can
save a lot of time,

An algorithm based on SSR
•  How the next candidate pair is chosen?

–  This choice must ensure that the state space is a tree

–  The choice also impacts on the number of states

needed to reach a solution

•  How the unfruitful states are pruned?

–  A good pruning criterion can greatly reduce the number

of states

– … but beware: the criterion should be fast to compute!
Matching time = Number of states * Time spent on each state

Basic ideas of VF2

•  For generating next states:
–  At each state, the algorithm keeps the so called Terminal sets:

•  Tin : set of nodes that have an edge going into a node already mapped

•  Tout: set of nodes that have an edge coming out of a node already mapped

–  For the pattern, the node in Tout with the smallest id is chosen;

for the target, all nodes in Tout are chosen

•  (Unless Tout is empty; if it is, Tin is used instead)

–  Tin and Tout are built “incrementally” when visiting the state tree

Terminal sets

2 3

4 1

A D

C B 1

A

M(s1) = {(1,A)}

Tin1(s1) = {3,4}
Tin2(s1) = {C,D}
Tout1(s1)={2}
Tout2(s1)={B}

M(s0) = {}
s0 s0

s1

Tin

Tout

Basic ideas of VF2
•  For pruning the states:

–  Rules that check arc consistency (Rpred/Rsucc) and label

compatibility

–  Rules that check the cardinality of the intersections of the

predecessors/successors of a node with Tin/Tout (Rterm), giving

a “1-step” look-ahead

–  Rules that check the cardinality of the difference between

predecessors/successor of a node and Tin/Tout (“2-steps” look-

ahead)

Pruning example

2 3

4 1

A D

C B 1

A

M(s1) = {(1,A)}

Tin1(s1) = {3,4}
Tin2(s1) = {C,D}
Tout1(s1)={2}
Tout2(s1)={B}

M(s0) = {}

s0 s0

s1

Tin

Tout

Consider the pair (3, D)
Pred(3) ∩ Tin(s1) = {4}
Pred(D) ∩ Tin(s1) = {}
Since Card({4}) > Card({}),
the pair can be excluded

Limits of VF2

�  Label information, that is usually available in
real world examples, is not used neither for
choosing the visit order nor for lookahead (it is
only used for checking consistency)

�  The choice of the next candidate does not
attempt to choose earlier a candidate with
more constraints (so as to maximize the effect
of pruning)

VF3: the proposed improvement

�  We change the order of visit of the state
space by taking into account both the labels
and the constraints relative to each node

�  We extend the look-ahead rules so as to take
into account labels and possibly other
information (e.g. about structure)

First improvement: node reordering
•  Before starting the matching, the nodes in the pattern are

reordered by taking the following factors into account:

–  Number of edges connecting the node to the previous ones

•  Each edge will introduce a “constraint” during the matching; putting nodes

with more constraints first is a heuristic commonly used in Constraint

Satisfaction literature

–  Frequency of occurrence of the label among the nodes in the target

–  Frequency of occurrence of nodes with a compatible valence in the

target

•  Thus, the nodes in the least repetitive parts of the target are tried first

VF2 Plus 3

tent with the constraints of the problem we are facing. Hence, the search space
is explored using a depth-first strategy with backtracking, driven by a set of
feasibility rules to prune, in advance, unfruitful search paths.

In order to provide more details, let us introduce some notations that will
be used in the following. Let be G1 = (V1, E1) the pattern graph (Figure 1(a)),
and G2 = (V2, E2) the target graph (Figure 1(b)), being V1, V2 and E1, E2 re-
spectively the vertices and the edges sets of each graph. Let us define the size
of the two graphs as the number of the nodes inside the sets V1 and V2, so that
|G1| = |V1| and |G2| = |V2|.

O
S

O

C

H

1

2

3

4

5

(a) Pattern
Graph G1

O
S

O

C

H

H

O

O

H

H

C

C

1 2

3 4

5

6
7

8

9 10

11

12

(b) Target Graph G2

Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out

2 (s) for these connected by outgoing edges.
Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the

sets �N1(s), �N2(s) that contain remaining vertices of G1 and G2, not in the core
or in the terminal sets:

VF2 Plus 3

tent with the constraints of the problem we are facing. Hence, the search space
is explored using a depth-first strategy with backtracking, driven by a set of
feasibility rules to prune, in advance, unfruitful search paths.

In order to provide more details, let us introduce some notations that will
be used in the following. Let be G1 = (V1, E1) the pattern graph (Figure 1(a)),
and G2 = (V2, E2) the target graph (Figure 1(b)), being V1, V2 and E1, E2 re-
spectively the vertices and the edges sets of each graph. Let us define the size
of the two graphs as the number of the nodes inside the sets V1 and V2, so that
|G1| = |V1| and |G2| = |V2|.

O
S

O

C

H

1

2

3

4

5

(a) Pattern
Graph G1

O
S

O

C

H

H

O

O

H

H

C

C

1 2

3 4

5

6
7

8

9 10

11

12

(b) Target Graph G2

Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out

2 (s) for these connected by outgoing edges.
Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the

sets �N1(s), �N2(s) that contain remaining vertices of G1 and G2, not in the core
or in the terminal sets:

First improvement: node reordering

•  This reordering of the pattern nodes can be done before the

matching starts, for a scenario of searching one pattern

against multiple targets

•  We have also modified the algorithm to precompute the Tin1

and Tout1 set for each state (they only depend on the “depth”

of the state in the state tree)

VF2 Plus 3

tent with the constraints of the problem we are facing. Hence, the search space
is explored using a depth-first strategy with backtracking, driven by a set of
feasibility rules to prune, in advance, unfruitful search paths.

In order to provide more details, let us introduce some notations that will
be used in the following. Let be G1 = (V1, E1) the pattern graph (Figure 1(a)),
and G2 = (V2, E2) the target graph (Figure 1(b)), being V1, V2 and E1, E2 re-
spectively the vertices and the edges sets of each graph. Let us define the size
of the two graphs as the number of the nodes inside the sets V1 and V2, so that
|G1| = |V1| and |G2| = |V2|.

O
S

O

C

H

1

2

3

4

5

(a) Pattern
Graph G1

O
S

O

C

H

H

O

O

H

H

C

C

1 2

3 4

5

6
7

8

9 10

11

12

(b) Target Graph G2

Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out

2 (s) for these connected by outgoing edges.
Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the

sets �N1(s), �N2(s) that contain remaining vertices of G1 and G2, not in the core
or in the terminal sets:

VF2 Plus 3

tent with the constraints of the problem we are facing. Hence, the search space
is explored using a depth-first strategy with backtracking, driven by a set of
feasibility rules to prune, in advance, unfruitful search paths.

In order to provide more details, let us introduce some notations that will
be used in the following. Let be G1 = (V1, E1) the pattern graph (Figure 1(a)),
and G2 = (V2, E2) the target graph (Figure 1(b)), being V1, V2 and E1, E2 re-
spectively the vertices and the edges sets of each graph. Let us define the size
of the two graphs as the number of the nodes inside the sets V1 and V2, so that
|G1| = |V1| and |G2| = |V2|.

O
S

O

C

H

1

2

3

4

5

(a) Pattern
Graph G1

O
S

O

C

H

H

O

O

H

H

C

C

1 2

3 4

5

6
7

8

9 10

11

12

(b) Target Graph G2

Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out

2 (s) for these connected by outgoing edges.
Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the

sets �N1(s), �N2(s) that contain remaining vertices of G1 and G2, not in the core
or in the terminal sets:

Second improvement:
terminal set partitioning

•  The nodes are divided into equivalence classes

constructed so that two nodes that may be matched

must be in the same class

–  In the simplest case, the node label is used for

defining the classes

–  For graph isomorphism also other information can be

included (e.g. node valence)

VF2 Plus 3

tent with the constraints of the problem we are facing. Hence, the search space
is explored using a depth-first strategy with backtracking, driven by a set of
feasibility rules to prune, in advance, unfruitful search paths.

In order to provide more details, let us introduce some notations that will
be used in the following. Let be G1 = (V1, E1) the pattern graph (Figure 1(a)),
and G2 = (V2, E2) the target graph (Figure 1(b)), being V1, V2 and E1, E2 re-
spectively the vertices and the edges sets of each graph. Let us define the size
of the two graphs as the number of the nodes inside the sets V1 and V2, so that
|G1| = |V1| and |G2| = |V2|.

O
S

O

C

H

1

2

3

4

5

(a) Pattern
Graph G1

O
S

O

C

H

H

O

O

H

H

C

C

1 2

3 4

5

6
7

8

9 10

11

12

(b) Target Graph G2

Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out

2 (s) for these connected by outgoing edges.
Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the

sets �N1(s), �N2(s) that contain remaining vertices of G1 and G2, not in the core
or in the terminal sets:

VF2 Plus 3

tent with the constraints of the problem we are facing. Hence, the search space
is explored using a depth-first strategy with backtracking, driven by a set of
feasibility rules to prune, in advance, unfruitful search paths.

In order to provide more details, let us introduce some notations that will
be used in the following. Let be G1 = (V1, E1) the pattern graph (Figure 1(a)),
and G2 = (V2, E2) the target graph (Figure 1(b)), being V1, V2 and E1, E2 re-
spectively the vertices and the edges sets of each graph. Let us define the size
of the two graphs as the number of the nodes inside the sets V1 and V2, so that
|G1| = |V1| and |G2| = |V2|.

O
S

O

C

H

1

2

3

4

5

(a) Pattern
Graph G1

O
S

O

C

H

H

O

O

H

H

C

C

1 2

3 4

5

6
7

8

9 10

11

12

(b) Target Graph G2

Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out

2 (s) for these connected by outgoing edges.
Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the

sets �N1(s), �N2(s) that contain remaining vertices of G1 and G2, not in the core
or in the terminal sets:

VF2 Plus 3

tent with the constraints of the problem we are facing. Hence, the search space
is explored using a depth-first strategy with backtracking, driven by a set of
feasibility rules to prune, in advance, unfruitful search paths.

In order to provide more details, let us introduce some notations that will
be used in the following. Let be G1 = (V1, E1) the pattern graph (Figure 1(a)),
and G2 = (V2, E2) the target graph (Figure 1(b)), being V1, V2 and E1, E2 re-
spectively the vertices and the edges sets of each graph. Let us define the size
of the two graphs as the number of the nodes inside the sets V1 and V2, so that
|G1| = |V1| and |G2| = |V2|.

O
S

O

C

H

1

2

3

4

5

(a) Pattern
Graph G1

O
S

O

C

H

H

O

O

H

H

C

C

1 2

3 4

5

6
7

8

9 10

11

12

(b) Target Graph G2

Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out

2 (s) for these connected by outgoing edges.
Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the

sets �N1(s), �N2(s) that contain remaining vertices of G1 and G2, not in the core
or in the terminal sets:

VF2 Plus 3

tent with the constraints of the problem we are facing. Hence, the search space
is explored using a depth-first strategy with backtracking, driven by a set of
feasibility rules to prune, in advance, unfruitful search paths.

In order to provide more details, let us introduce some notations that will
be used in the following. Let be G1 = (V1, E1) the pattern graph (Figure 1(a)),
and G2 = (V2, E2) the target graph (Figure 1(b)), being V1, V2 and E1, E2 re-
spectively the vertices and the edges sets of each graph. Let us define the size
of the two graphs as the number of the nodes inside the sets V1 and V2, so that
|G1| = |V1| and |G2| = |V2|.

O
S

O

C

H

1

2

3

4

5

(a) Pattern
Graph G1

O
S

O

C

H

H

O

O

H

H

C

C

1 2

3 4

5

6
7

8

9 10

11

12

(b) Target Graph G2

Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out

2 (s) for these connected by outgoing edges.
Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the

sets �N1(s), �N2(s) that contain remaining vertices of G1 and G2, not in the core
or in the terminal sets:

Second improvement:
terminal set partitioning

•  In each state, instead of having a single terminal

set for each graph, we have a separate terminal

set for each class

•  The look-ahead rules evaluate separately the

neighbor counts for each terminal set

VF2 Plus 3

tent with the constraints of the problem we are facing. Hence, the search space
is explored using a depth-first strategy with backtracking, driven by a set of
feasibility rules to prune, in advance, unfruitful search paths.

In order to provide more details, let us introduce some notations that will
be used in the following. Let be G1 = (V1, E1) the pattern graph (Figure 1(a)),
and G2 = (V2, E2) the target graph (Figure 1(b)), being V1, V2 and E1, E2 re-
spectively the vertices and the edges sets of each graph. Let us define the size
of the two graphs as the number of the nodes inside the sets V1 and V2, so that
|G1| = |V1| and |G2| = |V2|.

O
S

O

C

H

1

2

3

4

5

(a) Pattern
Graph G1

O
S

O

C

H

H

O

O

H

H

C

C

1 2

3 4

5

6
7

8

9 10

11

12

(b) Target Graph G2

Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out

2 (s) for these connected by outgoing edges.
Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the

sets �N1(s), �N2(s) that contain remaining vertices of G1 and G2, not in the core
or in the terminal sets:

VF2 Plus 3

tent with the constraints of the problem we are facing. Hence, the search space
is explored using a depth-first strategy with backtracking, driven by a set of
feasibility rules to prune, in advance, unfruitful search paths.

In order to provide more details, let us introduce some notations that will
be used in the following. Let be G1 = (V1, E1) the pattern graph (Figure 1(a)),
and G2 = (V2, E2) the target graph (Figure 1(b)), being V1, V2 and E1, E2 re-
spectively the vertices and the edges sets of each graph. Let us define the size
of the two graphs as the number of the nodes inside the sets V1 and V2, so that
|G1| = |V1| and |G2| = |V2|.

O
S

O

C

H

1

2

3

4

5

(a) Pattern
Graph G1

O
S

O

C

H

H

O

O

H

H

C

C

1 2

3 4

5

6
7

8

9 10

11

12

(b) Target Graph G2

Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out

2 (s) for these connected by outgoing edges.
Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the

sets �N1(s), �N2(s) that contain remaining vertices of G1 and G2, not in the core
or in the terminal sets:

VF2 Plus 3

tent with the constraints of the problem we are facing. Hence, the search space
is explored using a depth-first strategy with backtracking, driven by a set of
feasibility rules to prune, in advance, unfruitful search paths.

In order to provide more details, let us introduce some notations that will
be used in the following. Let be G1 = (V1, E1) the pattern graph (Figure 1(a)),
and G2 = (V2, E2) the target graph (Figure 1(b)), being V1, V2 and E1, E2 re-
spectively the vertices and the edges sets of each graph. Let us define the size
of the two graphs as the number of the nodes inside the sets V1 and V2, so that
|G1| = |V1| and |G2| = |V2|.

O
S

O

C

H

1

2

3

4

5

(a) Pattern
Graph G1

O
S

O

C

H

H

O

O

H

H

C

C

1 2

3 4

5

6
7

8

9 10

11

12

(b) Target Graph G2

Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out

2 (s) for these connected by outgoing edges.
Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the

sets �N1(s), �N2(s) that contain remaining vertices of G1 and G2, not in the core
or in the terminal sets:

VF2 Plus 3

tent with the constraints of the problem we are facing. Hence, the search space
is explored using a depth-first strategy with backtracking, driven by a set of
feasibility rules to prune, in advance, unfruitful search paths.

In order to provide more details, let us introduce some notations that will
be used in the following. Let be G1 = (V1, E1) the pattern graph (Figure 1(a)),
and G2 = (V2, E2) the target graph (Figure 1(b)), being V1, V2 and E1, E2 re-
spectively the vertices and the edges sets of each graph. Let us define the size
of the two graphs as the number of the nodes inside the sets V1 and V2, so that
|G1| = |V1| and |G2| = |V2|.

O
S

O

C

H

1

2

3

4

5

(a) Pattern
Graph G1

O
S

O

C

H

H

O

O

H

H

C

C

1 2

3 4

5

6
7

8

9 10

11

12

(b) Target Graph G2

Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out

2 (s) for these connected by outgoing edges.
Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the

sets �N1(s), �N2(s) that contain remaining vertices of G1 and G2, not in the core
or in the terminal sets:

Terminal set partitioning

2 3

4 1

A D

C B 1

A

M(s1) = {(1,A)}

Tin1(s1) = {3,4}
Tin2(s1) = {C,D}
Tout1(s1)={2}
Tout2(s1)={B}

M(s0) = {}
s0 s0

s1

Tin

Tout

Terminal set partitioning

2 3

4 1

A D

C B 1

A

M(s1) = {(1,A)}

Tin1(s1) = {3,4}
Tin2(s1) = {C,D}
Tout1(s1)={2}
Tout2(s1)={B}

M(s0) = {}
s0 s0

s1

Tin, class 1

Tout

If we partition the terminal
sets using information about
the number of incoming/
outcoming edges…

Tin, class 2

Second improvement:
terminal set partitioning

•  Trade off:
–  More classes => less candidate mappings need to be

explored

–  More classes => greater cost for maintaining the

terminal sets and checking the look-ahead rules

•  Thus in some cases it may make sense to have

less classes by grouping more than one label in

a same class

VF2 Plus 3

tent with the constraints of the problem we are facing. Hence, the search space
is explored using a depth-first strategy with backtracking, driven by a set of
feasibility rules to prune, in advance, unfruitful search paths.

In order to provide more details, let us introduce some notations that will
be used in the following. Let be G1 = (V1, E1) the pattern graph (Figure 1(a)),
and G2 = (V2, E2) the target graph (Figure 1(b)), being V1, V2 and E1, E2 re-
spectively the vertices and the edges sets of each graph. Let us define the size
of the two graphs as the number of the nodes inside the sets V1 and V2, so that
|G1| = |V1| and |G2| = |V2|.

O
S

O

C

H

1

2

3

4

5

(a) Pattern
Graph G1

O
S

O

C

H

H

O

O

H

H

C

C

1 2

3 4

5

6
7

8

9 10

11

12

(b) Target Graph G2

Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out

2 (s) for these connected by outgoing edges.
Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the

sets �N1(s), �N2(s) that contain remaining vertices of G1 and G2, not in the core
or in the terminal sets:

VF2 Plus 3

tent with the constraints of the problem we are facing. Hence, the search space
is explored using a depth-first strategy with backtracking, driven by a set of
feasibility rules to prune, in advance, unfruitful search paths.

In order to provide more details, let us introduce some notations that will
be used in the following. Let be G1 = (V1, E1) the pattern graph (Figure 1(a)),
and G2 = (V2, E2) the target graph (Figure 1(b)), being V1, V2 and E1, E2 re-
spectively the vertices and the edges sets of each graph. Let us define the size
of the two graphs as the number of the nodes inside the sets V1 and V2, so that
|G1| = |V1| and |G2| = |V2|.

O
S

O

C

H

1

2

3

4

5

(a) Pattern
Graph G1

O
S

O

C

H

H

O

O

H

H

C

C

1 2

3 4

5

6
7

8

9 10

11

12

(b) Target Graph G2

Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out

2 (s) for these connected by outgoing edges.
Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the

sets �N1(s), �N2(s) that contain remaining vertices of G1 and G2, not in the core
or in the terminal sets:

VF2 Plus 3

tent with the constraints of the problem we are facing. Hence, the search space
is explored using a depth-first strategy with backtracking, driven by a set of
feasibility rules to prune, in advance, unfruitful search paths.

In order to provide more details, let us introduce some notations that will
be used in the following. Let be G1 = (V1, E1) the pattern graph (Figure 1(a)),
and G2 = (V2, E2) the target graph (Figure 1(b)), being V1, V2 and E1, E2 re-
spectively the vertices and the edges sets of each graph. Let us define the size
of the two graphs as the number of the nodes inside the sets V1 and V2, so that
|G1| = |V1| and |G2| = |V2|.

O
S

O

C

H

1

2

3

4

5

(a) Pattern
Graph G1

O
S

O

C

H

H

O

O

H

H

C

C

1 2

3 4

5

6
7

8

9 10

11

12

(b) Target Graph G2

Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out

2 (s) for these connected by outgoing edges.
Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the

sets �N1(s), �N2(s) that contain remaining vertices of G1 and G2, not in the core
or in the terminal sets:

VF2 Plus 3

tent with the constraints of the problem we are facing. Hence, the search space
is explored using a depth-first strategy with backtracking, driven by a set of
feasibility rules to prune, in advance, unfruitful search paths.

In order to provide more details, let us introduce some notations that will
be used in the following. Let be G1 = (V1, E1) the pattern graph (Figure 1(a)),
and G2 = (V2, E2) the target graph (Figure 1(b)), being V1, V2 and E1, E2 re-
spectively the vertices and the edges sets of each graph. Let us define the size
of the two graphs as the number of the nodes inside the sets V1 and V2, so that
|G1| = |V1| and |G2| = |V2|.

O
S

O

C

H

1

2

3

4

5

(a) Pattern
Graph G1

O
S

O

C

H

H

O

O

H

H

C

C

1 2

3 4

5

6
7

8

9 10

11

12

(b) Target Graph G2

Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out

2 (s) for these connected by outgoing edges.
Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the

sets �N1(s), �N2(s) that contain remaining vertices of G1 and G2, not in the core
or in the terminal sets:

Graphs in Biological applications
•  Several biological data can be meaningfully represented by

graphs

–  Molecules

–  Protein structures

–  Protein contact maps

–  Interaction networks

–  …

Graphs in Biological applications
•  Graphs in Biological applications have some common traits:

–  Large to very large (up to tens of thousands of nodes)

–  Usually very sparse

–  Labels from a small set (e.g. elements, amino acids etc.)

–  Presence of highly repetitive substructures

Experimental evaluation
•  We have used a subset of the database of the

ICPR2014 contest on Graph Matching for

Pattern Search in Biological Database

–  Contact Maps

–  Protein structures

•  We have compared VF3 with VF2 and with three

recent algorithms participating to the contest: RI,

LAD and L2G

VF2 Plus 3

tent with the constraints of the problem we are facing. Hence, the search space
is explored using a depth-first strategy with backtracking, driven by a set of
feasibility rules to prune, in advance, unfruitful search paths.

In order to provide more details, let us introduce some notations that will
be used in the following. Let be G1 = (V1, E1) the pattern graph (Figure 1(a)),
and G2 = (V2, E2) the target graph (Figure 1(b)), being V1, V2 and E1, E2 re-
spectively the vertices and the edges sets of each graph. Let us define the size
of the two graphs as the number of the nodes inside the sets V1 and V2, so that
|G1| = |V1| and |G2| = |V2|.

O
S

O

C

H

1

2

3

4

5

(a) Pattern
Graph G1

O
S

O

C

H

H

O

O

H

H

C

C

1 2

3 4

5

6
7

8

9 10

11

12

(b) Target Graph G2

Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out

2 (s) for these connected by outgoing edges.
Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the

sets �N1(s), �N2(s) that contain remaining vertices of G1 and G2, not in the core
or in the terminal sets:

VF2 Plus 3

tent with the constraints of the problem we are facing. Hence, the search space
is explored using a depth-first strategy with backtracking, driven by a set of
feasibility rules to prune, in advance, unfruitful search paths.

In order to provide more details, let us introduce some notations that will
be used in the following. Let be G1 = (V1, E1) the pattern graph (Figure 1(a)),
and G2 = (V2, E2) the target graph (Figure 1(b)), being V1, V2 and E1, E2 re-
spectively the vertices and the edges sets of each graph. Let us define the size
of the two graphs as the number of the nodes inside the sets V1 and V2, so that
|G1| = |V1| and |G2| = |V2|.

O
S

O

C

H

1

2

3

4

5

(a) Pattern
Graph G1

O
S

O

C

H

H

O

O

H

H

C

C

1 2

3 4

5

6
7

8

9 10

11

12

(b) Target Graph G2

Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out

2 (s) for these connected by outgoing edges.
Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the

sets �N1(s), �N2(s) that contain remaining vertices of G1 and G2, not in the core
or in the terminal sets:

VF2 Plus 3

tent with the constraints of the problem we are facing. Hence, the search space
is explored using a depth-first strategy with backtracking, driven by a set of
feasibility rules to prune, in advance, unfruitful search paths.

In order to provide more details, let us introduce some notations that will
be used in the following. Let be G1 = (V1, E1) the pattern graph (Figure 1(a)),
and G2 = (V2, E2) the target graph (Figure 1(b)), being V1, V2 and E1, E2 re-
spectively the vertices and the edges sets of each graph. Let us define the size
of the two graphs as the number of the nodes inside the sets V1 and V2, so that
|G1| = |V1| and |G2| = |V2|.

O
S

O

C

H

1

2

3

4

5

(a) Pattern
Graph G1

O
S

O

C

H

H

O

O

H

H

C

C

1 2

3 4

5

6
7

8

9 10

11

12

(b) Target Graph G2

Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out

2 (s) for these connected by outgoing edges.
Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the

sets �N1(s), �N2(s) that contain remaining vertices of G1 and G2, not in the core
or in the terminal sets:

Contact maps

VF2 Plus 3

tent with the constraints of the problem we are facing. Hence, the search space
is explored using a depth-first strategy with backtracking, driven by a set of
feasibility rules to prune, in advance, unfruitful search paths.

In order to provide more details, let us introduce some notations that will
be used in the following. Let be G1 = (V1, E1) the pattern graph (Figure 1(a)),
and G2 = (V2, E2) the target graph (Figure 1(b)), being V1, V2 and E1, E2 re-
spectively the vertices and the edges sets of each graph. Let us define the size
of the two graphs as the number of the nodes inside the sets V1 and V2, so that
|G1| = |V1| and |G2| = |V2|.

O
S

O

C

H

1

2

3

4

5

(a) Pattern
Graph G1

O
S

O

C

H

H

O

O

H

H

C

C

1 2

3 4

5

6
7

8

9 10

11

12

(b) Target Graph G2

Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out

2 (s) for these connected by outgoing edges.
Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the

sets �N1(s), �N2(s) that contain remaining vertices of G1 and G2, not in the core
or in the terminal sets:

VF2 Plus 3

tent with the constraints of the problem we are facing. Hence, the search space
is explored using a depth-first strategy with backtracking, driven by a set of
feasibility rules to prune, in advance, unfruitful search paths.

In order to provide more details, let us introduce some notations that will
be used in the following. Let be G1 = (V1, E1) the pattern graph (Figure 1(a)),
and G2 = (V2, E2) the target graph (Figure 1(b)), being V1, V2 and E1, E2 re-
spectively the vertices and the edges sets of each graph. Let us define the size
of the two graphs as the number of the nodes inside the sets V1 and V2, so that
|G1| = |V1| and |G2| = |V2|.

O
S

O

C

H

1

2

3

4

5

(a) Pattern
Graph G1

O
S

O

C

H

H

O

O

H

H

C

C

1 2

3 4

5

6
7

8

9 10

11

12

(b) Target Graph G2

Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out

2 (s) for these connected by outgoing edges.
Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the

sets �N1(s), �N2(s) that contain remaining vertices of G1 and G2, not in the core
or in the terminal sets:

VF2 Plus 3

tent with the constraints of the problem we are facing. Hence, the search space
is explored using a depth-first strategy with backtracking, driven by a set of
feasibility rules to prune, in advance, unfruitful search paths.

In order to provide more details, let us introduce some notations that will
be used in the following. Let be G1 = (V1, E1) the pattern graph (Figure 1(a)),
and G2 = (V2, E2) the target graph (Figure 1(b)), being V1, V2 and E1, E2 re-
spectively the vertices and the edges sets of each graph. Let us define the size
of the two graphs as the number of the nodes inside the sets V1 and V2, so that
|G1| = |V1| and |G2| = |V2|.

O
S

O

C

H

1

2

3

4

5

(a) Pattern
Graph G1

O
S

O

C

H

H

O

O

H

H

C

C

1 2

3 4

5

6
7

8

9 10

11

12

(b) Target Graph G2

Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out

2 (s) for these connected by outgoing edges.
Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the

sets �N1(s), �N2(s) that contain remaining vertices of G1 and G2, not in the core
or in the terminal sets:

VF2 Plus 3

tent with the constraints of the problem we are facing. Hence, the search space
is explored using a depth-first strategy with backtracking, driven by a set of
feasibility rules to prune, in advance, unfruitful search paths.

In order to provide more details, let us introduce some notations that will
be used in the following. Let be G1 = (V1, E1) the pattern graph (Figure 1(a)),
and G2 = (V2, E2) the target graph (Figure 1(b)), being V1, V2 and E1, E2 re-
spectively the vertices and the edges sets of each graph. Let us define the size
of the two graphs as the number of the nodes inside the sets V1 and V2, so that
|G1| = |V1| and |G2| = |V2|.

O
S

O

C

H

1

2

3

4

5

(a) Pattern
Graph G1

O
S

O

C

H

H

O

O

H

H

C

C

1 2

3 4

5

6
7

8

9 10

11

12

(b) Target Graph G2

Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out

2 (s) for these connected by outgoing edges.
Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the

sets �N1(s), �N2(s) that contain remaining vertices of G1 and G2, not in the core
or in the terminal sets:

8 Vincenzo Carletti, Pasquale Foggia, Mario Vento

has been increased by reducing the variability of the labels; we called this dataset

Reduced Labels. The protein dataset is composed of very large and sparse graphs

from 500 to 10000 nodes, with average degree of 4; while the contact maps dataset

contains medium size and dense graphs from 150 to 800 nodes and average degree

of 20. In the original version the two datasets presents respectively 6 and 20

different labels, but in the modified version the variability of the labels has been

reduced to 4 and 7.

(a) Proteins (b) Proteins Reduced Labels

(c) Contact Maps (d) Contact Maps Reduced Labels

Fig. 4. Time in seconds to find all matchings on the four considered datasets.

As shown in Figure 4, VF2 Plus always outperforms VF2, LAD and L2G.

Especially on very large and sparse graphs the difference, between VF2 and

VF2 Plus, is more than two order of magnitude on the time to find all the

solutions. Furthermore, the Table 1 shows that VF2 Plus most often equals RI,

the algorithm winner of the International Contest on Pattern Search in Biological

Databases. Indeed, in several cases, the gap between VF2 Plus and RI is less then

the 10% on the matching time (Table 1). However, VF2 Plus performs better

than RI for very large and sparse graphs when the number of solutions increases

(Figure 4(b)) and for dense medium graphs when the number of label is higher

Proteins

VF2 Plus 3

tent with the constraints of the problem we are facing. Hence, the search space
is explored using a depth-first strategy with backtracking, driven by a set of
feasibility rules to prune, in advance, unfruitful search paths.

In order to provide more details, let us introduce some notations that will
be used in the following. Let be G1 = (V1, E1) the pattern graph (Figure 1(a)),
and G2 = (V2, E2) the target graph (Figure 1(b)), being V1, V2 and E1, E2 re-
spectively the vertices and the edges sets of each graph. Let us define the size
of the two graphs as the number of the nodes inside the sets V1 and V2, so that
|G1| = |V1| and |G2| = |V2|.

O
S

O

C

H

1

2

3

4

5

(a) Pattern
Graph G1

O
S

O

C

H

H

O

O

H

H

C

C

1 2

3 4

5

6
7

8

9 10

11

12

(b) Target Graph G2

Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out

2 (s) for these connected by outgoing edges.
Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the

sets �N1(s), �N2(s) that contain remaining vertices of G1 and G2, not in the core
or in the terminal sets:

VF2 Plus 3

tent with the constraints of the problem we are facing. Hence, the search space
is explored using a depth-first strategy with backtracking, driven by a set of
feasibility rules to prune, in advance, unfruitful search paths.

In order to provide more details, let us introduce some notations that will
be used in the following. Let be G1 = (V1, E1) the pattern graph (Figure 1(a)),
and G2 = (V2, E2) the target graph (Figure 1(b)), being V1, V2 and E1, E2 re-
spectively the vertices and the edges sets of each graph. Let us define the size
of the two graphs as the number of the nodes inside the sets V1 and V2, so that
|G1| = |V1| and |G2| = |V2|.

O
S

O

C

H

1

2

3

4

5

(a) Pattern
Graph G1

O
S

O

C

H

H

O

O

H

H

C

C

1 2

3 4

5

6
7

8

9 10

11

12

(b) Target Graph G2

Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out

2 (s) for these connected by outgoing edges.
Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the

sets �N1(s), �N2(s) that contain remaining vertices of G1 and G2, not in the core
or in the terminal sets:

VF2 Plus 3

tent with the constraints of the problem we are facing. Hence, the search space
is explored using a depth-first strategy with backtracking, driven by a set of
feasibility rules to prune, in advance, unfruitful search paths.

In order to provide more details, let us introduce some notations that will
be used in the following. Let be G1 = (V1, E1) the pattern graph (Figure 1(a)),
and G2 = (V2, E2) the target graph (Figure 1(b)), being V1, V2 and E1, E2 re-
spectively the vertices and the edges sets of each graph. Let us define the size
of the two graphs as the number of the nodes inside the sets V1 and V2, so that
|G1| = |V1| and |G2| = |V2|.

O
S

O

C

H

1

2

3

4

5

(a) Pattern
Graph G1

O
S

O

C

H

H

O

O

H

H

C

C

1 2

3 4

5

6
7

8

9 10

11

12

(b) Target Graph G2

Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out

2 (s) for these connected by outgoing edges.
Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the

sets �N1(s), �N2(s) that contain remaining vertices of G1 and G2, not in the core
or in the terminal sets:

VF2 Plus 3

tent with the constraints of the problem we are facing. Hence, the search space
is explored using a depth-first strategy with backtracking, driven by a set of
feasibility rules to prune, in advance, unfruitful search paths.

In order to provide more details, let us introduce some notations that will
be used in the following. Let be G1 = (V1, E1) the pattern graph (Figure 1(a)),
and G2 = (V2, E2) the target graph (Figure 1(b)), being V1, V2 and E1, E2 re-
spectively the vertices and the edges sets of each graph. Let us define the size
of the two graphs as the number of the nodes inside the sets V1 and V2, so that
|G1| = |V1| and |G2| = |V2|.

O
S

O

C

H

1

2

3

4

5

(a) Pattern
Graph G1

O
S

O

C

H

H

O

O

H

H

C

C

1 2

3 4

5

6
7

8

9 10

11

12

(b) Target Graph G2

Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out

2 (s) for these connected by outgoing edges.
Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the

sets �N1(s), �N2(s) that contain remaining vertices of G1 and G2, not in the core
or in the terminal sets:

8 Vincenzo Carletti, Pasquale Foggia, Mario Vento

has been increased by reducing the variability of the labels; we called this dataset

Reduced Labels. The protein dataset is composed of very large and sparse graphs

from 500 to 10000 nodes, with average degree of 4; while the contact maps dataset

contains medium size and dense graphs from 150 to 800 nodes and average degree

of 20. In the original version the two datasets presents respectively 6 and 20

different labels, but in the modified version the variability of the labels has been

reduced to 4 and 7.

(a) Proteins (b) Proteins Reduced Labels

(c) Contact Maps (d) Contact Maps Reduced Labels

Fig. 4. Time in seconds to find all matchings on the four considered datasets.

As shown in Figure 4, VF2 Plus always outperforms VF2, LAD and L2G.

Especially on very large and sparse graphs the difference, between VF2 and

VF2 Plus, is more than two order of magnitude on the time to find all the

solutions. Furthermore, the Table 1 shows that VF2 Plus most often equals RI,

the algorithm winner of the International Contest on Pattern Search in Biological

Databases. Indeed, in several cases, the gap between VF2 Plus and RI is less then

the 10% on the matching time (Table 1). However, VF2 Plus performs better

than RI for very large and sparse graphs when the number of solutions increases

(Figure 4(b)) and for dense medium graphs when the number of label is higher

Experimental evaluation

•  In order to check the dependency of the

algorithm on the number of different labels, we

have repeated the experiments by artificially

reducing the label diversity in the graphs

VF2 Plus 3

tent with the constraints of the problem we are facing. Hence, the search space
is explored using a depth-first strategy with backtracking, driven by a set of
feasibility rules to prune, in advance, unfruitful search paths.

In order to provide more details, let us introduce some notations that will
be used in the following. Let be G1 = (V1, E1) the pattern graph (Figure 1(a)),
and G2 = (V2, E2) the target graph (Figure 1(b)), being V1, V2 and E1, E2 re-
spectively the vertices and the edges sets of each graph. Let us define the size
of the two graphs as the number of the nodes inside the sets V1 and V2, so that
|G1| = |V1| and |G2| = |V2|.

O
S

O

C

H

1

2

3

4

5

(a) Pattern
Graph G1

O
S

O

C

H

H

O

O

H

H

C

C

1 2

3 4

5

6
7

8

9 10

11

12

(b) Target Graph G2

Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out

2 (s) for these connected by outgoing edges.
Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the

sets �N1(s), �N2(s) that contain remaining vertices of G1 and G2, not in the core
or in the terminal sets:

VF2 Plus 3

tent with the constraints of the problem we are facing. Hence, the search space
is explored using a depth-first strategy with backtracking, driven by a set of
feasibility rules to prune, in advance, unfruitful search paths.

In order to provide more details, let us introduce some notations that will
be used in the following. Let be G1 = (V1, E1) the pattern graph (Figure 1(a)),
and G2 = (V2, E2) the target graph (Figure 1(b)), being V1, V2 and E1, E2 re-
spectively the vertices and the edges sets of each graph. Let us define the size
of the two graphs as the number of the nodes inside the sets V1 and V2, so that
|G1| = |V1| and |G2| = |V2|.

O
S

O

C

H

1

2

3

4

5

(a) Pattern
Graph G1

O
S

O

C

H

H

O

O

H

H

C

C

1 2

3 4

5

6
7

8

9 10

11

12

(b) Target Graph G2

Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out

2 (s) for these connected by outgoing edges.
Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the

sets �N1(s), �N2(s) that contain remaining vertices of G1 and G2, not in the core
or in the terminal sets:

VF2 Plus 3

tent with the constraints of the problem we are facing. Hence, the search space
is explored using a depth-first strategy with backtracking, driven by a set of
feasibility rules to prune, in advance, unfruitful search paths.

In order to provide more details, let us introduce some notations that will
be used in the following. Let be G1 = (V1, E1) the pattern graph (Figure 1(a)),
and G2 = (V2, E2) the target graph (Figure 1(b)), being V1, V2 and E1, E2 re-
spectively the vertices and the edges sets of each graph. Let us define the size
of the two graphs as the number of the nodes inside the sets V1 and V2, so that
|G1| = |V1| and |G2| = |V2|.

O
S

O

C

H

1

2

3

4

5

(a) Pattern
Graph G1

O
S

O

C

H

H

O

O

H

H

C

C

1 2

3 4

5

6
7

8

9 10

11

12

(b) Target Graph G2

Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out

2 (s) for these connected by outgoing edges.
Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the

sets �N1(s), �N2(s) that contain remaining vertices of G1 and G2, not in the core
or in the terminal sets:

VF2 Plus 3

tent with the constraints of the problem we are facing. Hence, the search space
is explored using a depth-first strategy with backtracking, driven by a set of
feasibility rules to prune, in advance, unfruitful search paths.

In order to provide more details, let us introduce some notations that will
be used in the following. Let be G1 = (V1, E1) the pattern graph (Figure 1(a)),
and G2 = (V2, E2) the target graph (Figure 1(b)), being V1, V2 and E1, E2 re-
spectively the vertices and the edges sets of each graph. Let us define the size
of the two graphs as the number of the nodes inside the sets V1 and V2, so that
|G1| = |V1| and |G2| = |V2|.

O
S

O

C

H

1

2

3

4

5

(a) Pattern
Graph G1

O
S

O

C

H

H

O

O

H

H

C

C

1 2

3 4

5

6
7

8

9 10

11

12

(b) Target Graph G2

Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out

2 (s) for these connected by outgoing edges.
Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the

sets �N1(s), �N2(s) that contain remaining vertices of G1 and G2, not in the core
or in the terminal sets:

Contact maps – reduced labels

VF2 Plus 3

tent with the constraints of the problem we are facing. Hence, the search space
is explored using a depth-first strategy with backtracking, driven by a set of
feasibility rules to prune, in advance, unfruitful search paths.

In order to provide more details, let us introduce some notations that will
be used in the following. Let be G1 = (V1, E1) the pattern graph (Figure 1(a)),
and G2 = (V2, E2) the target graph (Figure 1(b)), being V1, V2 and E1, E2 re-
spectively the vertices and the edges sets of each graph. Let us define the size
of the two graphs as the number of the nodes inside the sets V1 and V2, so that
|G1| = |V1| and |G2| = |V2|.

O
S

O

C

H

1

2

3

4

5

(a) Pattern
Graph G1

O
S

O

C

H

H

O

O

H

H

C

C

1 2

3 4

5

6
7

8

9 10

11

12

(b) Target Graph G2

Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out

2 (s) for these connected by outgoing edges.
Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the

sets �N1(s), �N2(s) that contain remaining vertices of G1 and G2, not in the core
or in the terminal sets:

VF2 Plus 3

tent with the constraints of the problem we are facing. Hence, the search space
is explored using a depth-first strategy with backtracking, driven by a set of
feasibility rules to prune, in advance, unfruitful search paths.

In order to provide more details, let us introduce some notations that will
be used in the following. Let be G1 = (V1, E1) the pattern graph (Figure 1(a)),
and G2 = (V2, E2) the target graph (Figure 1(b)), being V1, V2 and E1, E2 re-
spectively the vertices and the edges sets of each graph. Let us define the size
of the two graphs as the number of the nodes inside the sets V1 and V2, so that
|G1| = |V1| and |G2| = |V2|.

O
S

O

C

H

1

2

3

4

5

(a) Pattern
Graph G1

O
S

O

C

H

H

O

O

H

H

C

C

1 2

3 4

5

6
7

8

9 10

11

12

(b) Target Graph G2

Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out

2 (s) for these connected by outgoing edges.
Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the

sets �N1(s), �N2(s) that contain remaining vertices of G1 and G2, not in the core
or in the terminal sets:

VF2 Plus 3

tent with the constraints of the problem we are facing. Hence, the search space
is explored using a depth-first strategy with backtracking, driven by a set of
feasibility rules to prune, in advance, unfruitful search paths.

In order to provide more details, let us introduce some notations that will
be used in the following. Let be G1 = (V1, E1) the pattern graph (Figure 1(a)),
and G2 = (V2, E2) the target graph (Figure 1(b)), being V1, V2 and E1, E2 re-
spectively the vertices and the edges sets of each graph. Let us define the size
of the two graphs as the number of the nodes inside the sets V1 and V2, so that
|G1| = |V1| and |G2| = |V2|.

O
S

O

C

H

1

2

3

4

5

(a) Pattern
Graph G1

O
S

O

C

H

H

O

O

H

H

C

C

1 2

3 4

5

6
7

8

9 10

11

12

(b) Target Graph G2

Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out

2 (s) for these connected by outgoing edges.
Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the

sets �N1(s), �N2(s) that contain remaining vertices of G1 and G2, not in the core
or in the terminal sets:

VF2 Plus 3

tent with the constraints of the problem we are facing. Hence, the search space
is explored using a depth-first strategy with backtracking, driven by a set of
feasibility rules to prune, in advance, unfruitful search paths.

In order to provide more details, let us introduce some notations that will
be used in the following. Let be G1 = (V1, E1) the pattern graph (Figure 1(a)),
and G2 = (V2, E2) the target graph (Figure 1(b)), being V1, V2 and E1, E2 re-
spectively the vertices and the edges sets of each graph. Let us define the size
of the two graphs as the number of the nodes inside the sets V1 and V2, so that
|G1| = |V1| and |G2| = |V2|.

O
S

O

C

H

1

2

3

4

5

(a) Pattern
Graph G1

O
S

O

C

H

H

O

O

H

H

C

C

1 2

3 4

5

6
7

8

9 10

11

12

(b) Target Graph G2

Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out

2 (s) for these connected by outgoing edges.
Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the

sets �N1(s), �N2(s) that contain remaining vertices of G1 and G2, not in the core
or in the terminal sets:

Proteins – reduced labels

VF2 Plus 3

tent with the constraints of the problem we are facing. Hence, the search space
is explored using a depth-first strategy with backtracking, driven by a set of
feasibility rules to prune, in advance, unfruitful search paths.

In order to provide more details, let us introduce some notations that will
be used in the following. Let be G1 = (V1, E1) the pattern graph (Figure 1(a)),
and G2 = (V2, E2) the target graph (Figure 1(b)), being V1, V2 and E1, E2 re-
spectively the vertices and the edges sets of each graph. Let us define the size
of the two graphs as the number of the nodes inside the sets V1 and V2, so that
|G1| = |V1| and |G2| = |V2|.

O
S

O

C

H

1

2

3

4

5

(a) Pattern
Graph G1

O
S

O

C

H

H

O

O

H

H

C

C

1 2

3 4

5

6
7

8

9 10

11

12

(b) Target Graph G2

Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out

2 (s) for these connected by outgoing edges.
Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the

sets �N1(s), �N2(s) that contain remaining vertices of G1 and G2, not in the core
or in the terminal sets:

VF2 Plus 3

tent with the constraints of the problem we are facing. Hence, the search space
is explored using a depth-first strategy with backtracking, driven by a set of
feasibility rules to prune, in advance, unfruitful search paths.

In order to provide more details, let us introduce some notations that will
be used in the following. Let be G1 = (V1, E1) the pattern graph (Figure 1(a)),
and G2 = (V2, E2) the target graph (Figure 1(b)), being V1, V2 and E1, E2 re-
spectively the vertices and the edges sets of each graph. Let us define the size
of the two graphs as the number of the nodes inside the sets V1 and V2, so that
|G1| = |V1| and |G2| = |V2|.

O
S

O

C

H

1

2

3

4

5

(a) Pattern
Graph G1

O
S

O

C

H

H

O

O

H

H

C

C

1 2

3 4

5

6
7

8

9 10

11

12

(b) Target Graph G2

Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out

2 (s) for these connected by outgoing edges.
Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the

sets �N1(s), �N2(s) that contain remaining vertices of G1 and G2, not in the core
or in the terminal sets:

VF2 Plus 3

tent with the constraints of the problem we are facing. Hence, the search space
is explored using a depth-first strategy with backtracking, driven by a set of
feasibility rules to prune, in advance, unfruitful search paths.

In order to provide more details, let us introduce some notations that will
be used in the following. Let be G1 = (V1, E1) the pattern graph (Figure 1(a)),
and G2 = (V2, E2) the target graph (Figure 1(b)), being V1, V2 and E1, E2 re-
spectively the vertices and the edges sets of each graph. Let us define the size
of the two graphs as the number of the nodes inside the sets V1 and V2, so that
|G1| = |V1| and |G2| = |V2|.

O
S

O

C

H

1

2

3

4

5

(a) Pattern
Graph G1

O
S

O

C

H

H

O

O

H

H

C

C

1 2

3 4

5

6
7

8

9 10

11

12

(b) Target Graph G2

Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out

2 (s) for these connected by outgoing edges.
Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the

sets �N1(s), �N2(s) that contain remaining vertices of G1 and G2, not in the core
or in the terminal sets:

VF2 Plus 3

tent with the constraints of the problem we are facing. Hence, the search space
is explored using a depth-first strategy with backtracking, driven by a set of
feasibility rules to prune, in advance, unfruitful search paths.

In order to provide more details, let us introduce some notations that will
be used in the following. Let be G1 = (V1, E1) the pattern graph (Figure 1(a)),
and G2 = (V2, E2) the target graph (Figure 1(b)), being V1, V2 and E1, E2 re-
spectively the vertices and the edges sets of each graph. Let us define the size
of the two graphs as the number of the nodes inside the sets V1 and V2, so that
|G1| = |V1| and |G2| = |V2|.

O
S

O

C

H

1

2

3

4

5

(a) Pattern
Graph G1

O
S

O

C

H

H

O

O

H

H

C

C

1 2

3 4

5

6
7

8

9 10

11

12

(b) Target Graph G2

Fig. 1. Graphs used as example to detail how VF2 and VF2 Plus work.

The algorithm has to keep track, at each state, of the vertex pairs inside the
current mapping and of the set of nodes where to search for the next candidate
pairs. As shown in Figure 3, each state s stores mapped couples in a set M(s),
namely the core set, and uses vertices in two separated sets M1(s) and M2(s),
respectively for first and second graph. Then, for each vertex in M1(s) and
M2(s), neighbors not yet in the core set are kept into two sets T1(s) and T2(s),
called terminal sets. Obviously, in the case of directed graph, each states uses
two different pairs of terminal sets: T in

1 (s), T in
2 (s) for neighbors connected by

incoming edges and T out
1 (s), T out

2 (s) for these connected by outgoing edges.
Despite this representation seems to need a space complexity quadratic with
respect to the number of the states, VF2 exploits an optimized representation
able to reduces this complexity to linear.

Before generating a new state, VF2 selects the next candidate pair (u, v) by
picking u from T1(s) and v from T2(s) if T1(s) �= 0 and T2(s) �= 0, or from the

sets �N1(s), �N2(s) that contain remaining vertices of G1 and G2, not in the core
or in the terminal sets:

Social network analysis

Social networks can be modeled as graphs

The node denotes
a person

The edge indicates a relationship
between the persons

The problem: a few examples
�  Equivalent actors occupy indistinguishable

structural locations in a network. Structural
location can be defined in terms of sub graph
isomorphism.

�  Frequent sub graph allows to discover
frequent substructures
�  generate frequent substructure candidates;
�  process the generated candidate sub graphs so as

to identify the desired frequent sub graphs by sub
graph isomorphism).

Experimental Results

� DATASET: a synthetic dataset has been
generated according to two well known
models of complex networks:
�  Small World networks
�  Scale Free networks

�  It has been shown (*) that such models
approximate very well the characteristics
of social networks.

 (*) S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang,
 Complex networks: Structure and dynamics, Physics Reports, 2006

Small World networks

� Even though most pairs of nodes are not
directly connected, there is an upper
bound to the number of steps connecting
any two nodes:

� D(n1,n2) ≤ c*log(N)

� E.g. the theory about six degrees of
separation between any two persons

Scale Free networks

�  The degrees of the nodes are not
uniformly distributed. There are many
nodes with low degree and few nodes
with high degree.

� More formally, if we sort the nodes
according to their degree, the k-th node
will have a degree:

�  dk = c*e-λ*k

Experimental Results
Small word networks (256 labels)

Experimental Results
Small world networks (128 labels)

Experimental Results
Small world networks (128 labels)

Experimental Results
Scale free graphs (256 labels)

Experimental Results
Scale free graphs (256 labels)

Experimental Results
Scale free graphs (128 labels)

Experimental Results
Scale free graphs (128 labels)

Conclusions

�  The improved VF3 is considerably faster
then the original algorithm

� On both biological graphs and social
network graphs it keeps a good
performance (even when it is not the best,
it is close to the best)

�  It has a higher percentage of matchings
completed before the timeout

