

Optimal transport for graph data

Barycenters and dictionary learning

R. Flamary - CMAP, École Polytechnique, Institut Polytechnique de Paris

November 10 2021 Journée NormaSTIC, Lisieux

Collaborators

N. Courty A. Rakotomamonjy

B. Damodaran

H. Janati

T. Séjourné

H. Tran

G. Gasso

M. Corneli C. Vincent-Cuaz

Table of content

Optimal Transport and Gromov-Wasserstein

Discrete Optimal Transport (OT)

Gromov-Wasserstein divergence

Applications of Gromov Wasserstein

Fused Gromov-Wasserstein

Labeled graphs as distributions

Fused Gromov-Wasserstein distance

Applications on graphs

Online Graph Dictionary Learning

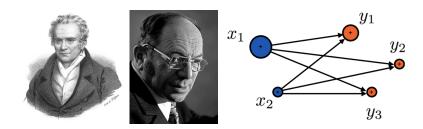
Linear modeling and unmixing of graphs

Learning a dictionary of graphs

Numerical experiments

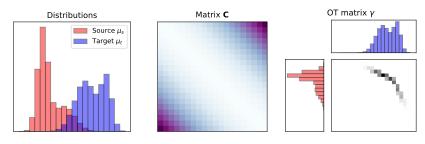
Optimal Transport and Gromov-Wasserstein

Optimal transport



- Problem introduced by Gaspard Monge in his memoire [Monge, 1781].
- How to move mass while minimizing a cost (mass + cost)
- Monge formulation seeks for a mapping between two mass distribution.
- Reformulated by Leonid Kantorovich (1912–1986), Economy nobelist in 1975
- Focus on where the mass goes, allow splitting [Kantorovich, 1942].
- Applications mainly for resource allocation problems

Optimal transport between discrete distributions



Kantorovitch formulation : OT Linear Program

When
$$\mu_s = \sum_{i=1}^{n_s} a_i \delta_{\mathbf{x}_i^s}$$
 and $\mu_t = \sum_{i=1}^{n_t} b_i \delta_{\mathbf{x}_i^t}$

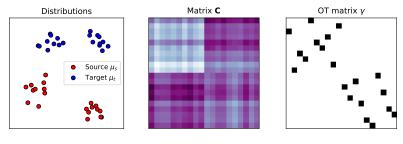
$$W_p^p(\boldsymbol{\mu_s}, \boldsymbol{\mu_t}) = \min_{\mathbf{T} \in \Pi(\boldsymbol{\mu_s}, \boldsymbol{\mu_t})} \left\{ \langle \mathbf{T}, \mathbf{C} \rangle_F = \sum_{i,j} T_{i,j} c_{i,j} \right\}$$

where C is a cost matrix with $c_{i,j} = c(\mathbf{x}_i^s, \mathbf{x}_j^t) = \|\mathbf{x}_i^s - \mathbf{x}_j^t\|^p$ and the constraints are

$$\Pi(\pmb{\mu_s},\pmb{\mu_t}) = \left\{ \mathbf{T} \in (\mathbb{R}^+)^{n_s imes n_t} | \, \mathbf{T} \mathbf{1}_{n_t} = \mathbf{a}, \mathbf{T}^T \mathbf{1}_{n_s} = \mathbf{b}
ight\}$$

- Linear program with $n_s n_t$ variables and $n_s + n_t$ constraints.
- Solving the OT problem with network simplex is $O(n^3 \log(n))$ for $n = n_s = n_t$.
- $W_p(\mu_s, \mu_t)$ is called the Wasserstein distance (EMD for p=1).

Optimal transport between discrete distributions



Kantorovitch formulation : OT Linear Program

When
$$\mu_s = \sum_{i=1}^{n_s} a_i \delta_{\mathbf{x}_i^s}$$
 and $\mu_t = \sum_{i=1}^{n_t} b_i \delta_{\mathbf{x}_i^t}$

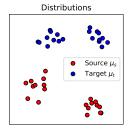
$$W_p^p(\boldsymbol{\mu_s}, \boldsymbol{\mu_t}) = \min_{\mathbf{T} \in \Pi(\boldsymbol{\mu_s}, \boldsymbol{\mu_t})} \quad \left\{ \langle \mathbf{T}, \mathbf{C} \rangle_F = \sum_{i,j} T_{i,j} c_{i,j} \right\}$$

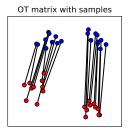
where C is a cost matrix with $c_{i,j} = c(\mathbf{x}_i^s, \mathbf{x}_j^t) = \|\mathbf{x}_i^s - \mathbf{x}_j^t\|^p$ and the constraints are

$$\Pi(\mu_s, \mu_t) = \left\{ \mathbf{T} \in (\mathbb{R}^+)^{n_s \times n_t} | \, \mathbf{T} \mathbf{1}_{n_t} = \mathbf{a}, \mathbf{T}^T \mathbf{1}_{n_s} = \mathbf{b}
ight\}$$

- Linear program with $n_s n_t$ variables and $n_s + n_t$ constraints.
- Solving the OT problem with network simplex is $O(n^3 \log(n))$ for $n = n_s = n_t$.
- $W_p(\mu_s, \mu_t)$ is called the Wasserstein distance (EMD for p=1).

Optimal transport between discrete distributions





Kantorovitch formulation: OT Linear Program

When $\mu_s = \sum_{i=1}^{n_s} a_i \delta_{\mathbf{x}_i^s}$ and $\mu_t = \sum_{i=1}^{n_t} b_i \delta_{\mathbf{x}_i^t}$

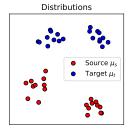
$$W_p^p(\boldsymbol{\mu_s}, \boldsymbol{\mu_t}) = \min_{\mathbf{T} \in \Pi(\boldsymbol{\mu_s}, \boldsymbol{\mu_t})} \quad \left\{ \langle \mathbf{T}, \mathbf{C} \rangle_F = \sum_{i,j} T_{i,j} c_{i,j} \right\}$$

where C is a cost matrix with $c_{i,j} = c(\mathbf{x}_i^s, \mathbf{x}_j^t) = \|\mathbf{x}_i^s - \mathbf{x}_j^t\|^p$ and the constraints are

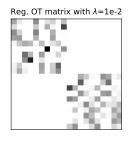
$$\Pi(\pmb{\mu_s},\pmb{\mu_t}) = \left\{ \mathbf{T} \in (\mathbb{R}^+)^{n_s imes n_t} | \, \mathbf{T} \mathbf{1}_{n_t} = \mathbf{a}, \mathbf{T}^T \mathbf{1}_{n_s} = \mathbf{b}
ight\}$$

- Linear program with $n_s n_t$ variables and $n_s + n_t$ constraints.
- Solving the OT problem with network simplex is $O(n^3 \log(n))$ for $n = n_s = n_t$.
- $W_p(\mu_s, \mu_t)$ is called the Wasserstein distance (EMD for p=1).

Entropic regularized optimal transport



Reg. OT matrix with λ=1e-3

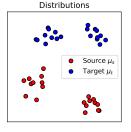


Entropic regularization [Cuturi, 2013]

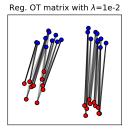
$$W_{\epsilon}(\boldsymbol{\mu}_{s}, \boldsymbol{\mu}_{t}) = \min_{\mathbf{T} \in \Pi(\boldsymbol{\mu}_{s}, \boldsymbol{\mu}_{t})} \quad \langle \mathbf{T}, \mathbf{C} \rangle_{F} + \epsilon \sum_{i,j} T_{i,j} \log T_{i,j}$$

- Regularization with the negative entropy $-H(\mathbf{T})$.
- Looses sparsity, but strictly convex optimization problem [Benamou et al., 2015].
- Can be solved with the very efficient Sinkhorn-Knopp matrix scaling algorithm.
- Loss and OT matrix are differentiable and have better statistical properties [Genevay et al., 2018].
- ullet Classical OT needs distributions lying in the same space o Gromov-Wasserstein.

Entropic regularized optimal transport



Reg. OT matrix with λ=1e-3

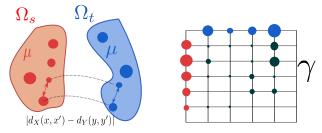


Entropic regularization [Cuturi, 2013]

$$W_{\epsilon}(\boldsymbol{\mu}_{s}, \boldsymbol{\mu}_{t}) = \min_{\mathbf{T} \in \Pi(\boldsymbol{\mu}_{s}, \boldsymbol{\mu}_{t})} \quad \langle \mathbf{T}, \mathbf{C} \rangle_{F} + \epsilon \sum_{i,j} T_{i,j} \log T_{i,j}$$

- Regularization with the negative entropy $-H(\mathbf{T})$.
- Looses sparsity, but strictly convex optimization problem [Benamou et al., 2015].
- Can be solved with the very efficient Sinkhorn-Knopp matrix scaling algorithm.
- Loss and OT matrix are differentiable and have better statistical properties [Genevay et al., 2018].
- ullet Classical OT needs distributions lying in the same space o Gromov-Wasserstein.

Gromov-Wasserstein divergence



Inspired from Gabriel Peyré

GW for discrete distributions [Memoli, 2011]

$$\mathcal{GW}_{p}(\mu_{s}, \mu_{t}) = \left(\min_{T \in \Pi(\mu_{s}, \mu_{t})} \sum_{i, j, k, l} |D_{i, k} - D'_{j, l}|^{p} T_{i, j} T_{k, l}\right)^{\frac{1}{p}}$$

with
$$\mu_s = \sum_i a_i \delta_{\mathbf{x}_i^s}$$
 and $\mu_t = \sum_j b_j \delta_{x_j^t}$ and $D_{i,k} = \|\mathbf{x}_i^s - \mathbf{x}_k^s\|, D_{j,l}' = \|\mathbf{x}_j^t - \mathbf{x}_l^t\|$

- Distance between metric measured spaces: across different spaces.
- Search for an OT plan that preserve the pairwise relationships between samples.
- Invariant to isometry in either spaces (e.g. rotations and translation).

Solving the Gromov Wasserstein optimization problem

$$\mathcal{GW}_{p}^{p}(\mu_{s}, \mu_{t}) = \min_{\mathbf{T} \in \Pi(\mu_{s}, \mu_{t})} \sum_{i,j,k,l} |D_{i,k} - D'_{j,l}|^{p} T_{i,j} T_{k,l}$$

with
$$\mu_s = \sum_i a_i \delta_{\mathbf{x}_i^s}$$
 and $\mu_t = \sum_j b_j \delta_{x_j^t}$ and $D_{i,k} = \|\mathbf{x}_i^s - \mathbf{x}_k^s\|, D_{j,l}' = \|\mathbf{x}_j^t - \mathbf{x}_l^t\|$

Optimization problem

- Quadratic Program (Wasserstein is a linear program).
- Nonconvex, NP-hard, related to Quadratic Assignment Problem (QAP).

Optimization algorithm

- Large problem and non convexity forbid standard QP solvers.
- Local solution can be obtained with conditional gradient (Frank-Wolfe)
 [Vayer et al., 2018] (each iteration is an OT problems).
- Gromov in 1D has a close form (solved in discrete with a sort) [Vayer et al., 2019].
- Can be regularized by entropy similarly to classical OT.

Entropic Gromov-Wasserstein

Optimization Problem [Peyré et al., 2016]

$$\mathcal{GW}_{p,\epsilon}^{p}(\mu_{s},\mu_{t}) = \min_{\mathbf{T} \in \Pi(\mu_{s},\mu_{t})} \sum_{i,j,k,l} |D_{i,k} - D'_{j,l}|^{p} T_{i,j} T_{k,l} + \epsilon \sum_{i,j} T_{i,j} \log T_{i,j}$$
(1)

with
$$\mu_s = \sum_i a_i \delta_{\mathbf{x}_i^s}$$
 and $\mu_t = \sum_j b_j \delta_{x_j^t}$ and $D_{i,k} = \|\mathbf{x}_i^s - \mathbf{x}_k^s\|, D_{j,l}' = \|\mathbf{x}_j^t - \mathbf{x}_l^t\|$

• Smoothing the original GW with a convex and smooth entropic term.

Solving the entropic \mathcal{GW} [Peyré et al., 2016]

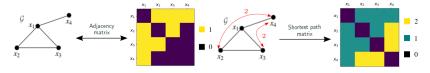
- Problem (1) can be solved using a KL mirror descent.
- ullet This is equivalent to solving at each iteration t

$$\mathbf{T}^{(t+1)} = \min_{\mathbf{T} \in \mathcal{P}} \quad \left\langle \mathbf{T}, \mathbf{G}^{(t)} \right\rangle_F + \epsilon \sum_{i,j} T_{i,j} \log T_{i,j}$$

Where $G_{i,j}^{(t)} = 2\sum_{k,l} |D_{i,k} - D'_{j,l}|^p T_{k,l}^{(t)}$ is the gradient of the GW loss at previous point $\mathbf{T}^{(k)}$.

- Problem above can be solved using a Sinkhorn-Knopp algorithm of entropic OT.
- Very fast approximation exist for low rank distances [Scetbon et al., 2021].

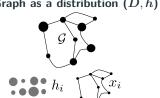
Gromov-Wasserstein between graphs



Modeling the graph structure with a pairwise matrix D

- ullet An undirected graph $\mathcal{G}:=(V,E)$ is defined by $V=\{x_i\}_{i\in[N]}$ set of the N nodes and $\mathbf{E} = \{(\mathbf{x_i}, \mathbf{x_i}) | \mathbf{x_i} \leftrightarrow \mathbf{x_i} \}$ set of edges.
- ullet Structure represented as a symmetric matrix D of relations between the nodes.
- Possible choices: Adjacency matrix (used in this study), Laplacian matrix, Shortest path matrix.

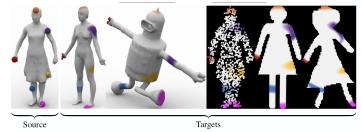
Graph as a distribution (D, h)



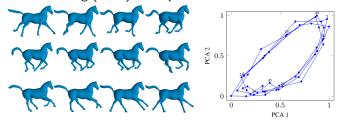
- Graph represented as a discrete distribution $\mu_X = \sum_i h_i \delta_{x_i}$.
- The positions x_i are implicit and represented as the pairwise matrix D.
- h_i are the masses on the nodes of the graphs (uniform by default).

Applications of GW [Solomon et al., 2016]

Shape matching between 3D and 2D surfaces

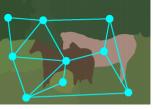


Multidimensional scaling (MDS) of shape collection



Fused Gromov-Wasserstein

Structured data



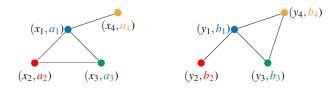
Structured data

- Some structured data can be viewed as a combination of features informations linked within each other by some structural information.
- Can be seen as a distribution on a joint feature/structure space.
- Example : labeled graph.

Meaningful distances on labeled structured data

- Us both features (labels) and structure (graph).
- Allows for comparison, classification.
- Data science (statistics, means, concentration).

Structured data



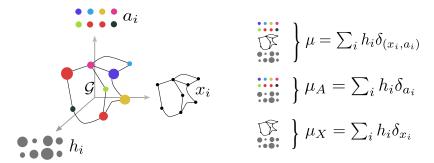
Structured data

- Some structured data can be viewed as a combination of features informations linked within each other by some structural information.
- Can be seen as a distribution on a joint feature/structure space.
- Example : labeled graph.

Meaningful distances on labeled structured data

- Us both features (labels) and structure (graph).
- Allows for comparison, classification.
- Data science (statistics, means, concentration).

Structured data as distributions

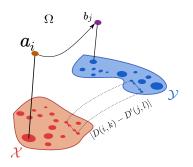


Graph data representation

$$\mu = \sum_{i=1}^{n} h_i \delta_{(x_i a_i)}$$

- Nodes are weighted by their mass h_i .
- ullet But no common metric between the structure points x_i of two different graphs.
- ullet Features values a_i can be compared through the common metric

Fused Gromov-Wasserstein distance



Fused Gromov Wasserstein distance

$$\mu_s = \sum_{i=1}^n h_i \delta_{x_i, a_i}$$
 and $\mu_t = \sum_{j=1}^m g_j \delta_{y_j, b_j}$

$$\mathcal{FGW}_{p,q,\alpha}(D,D',\boldsymbol{\mu_s},\boldsymbol{\mu_t}) = \left(\min_{\mathbf{T} \in \Pi(\boldsymbol{\mu_s},\boldsymbol{\mu_t})} \sum_{i,j,k,l} \left((1-\alpha)C_{i,j}^q + \alpha | \boldsymbol{D_{i,k}} - \boldsymbol{D'_{j,l}}|^q \right)^p T_{i,j} T_{k,l} \right)^{\frac{1}{p}}$$

with
$$D_{i,k} = \|x_i - x_k\|$$
 and $D'_{j,l} = \|y_i - y_l\|$ and $C_{i,j} = \|a_i - b_j\|$

- Parameters q > 1, $\forall p \ge 1$.
- $\alpha \in [0,1]$ is a trade off parameter between structure and features.

FGW Properties (1)

$$\mathcal{FGW}_{p,q,\alpha}^{p}(D,D',\textcolor{red}{\mu_{s}},\textcolor{red}{\mu_{t}}) = \min_{\mathbf{T} \in \Pi(\textcolor{red}{\mu_{s}},\textcolor{red}{\mu_{t}})} \sum_{i,j,k,l} \left((1-\alpha)C_{\pmb{i},\pmb{j}}^{q} + \alpha |\textcolor{red}{D_{\pmb{i},\pmb{k}}} - \textcolor{red}{D_{\pmb{j},l}}|^{q} \right)^{p} T_{i,j} \, T_{k,l}$$

Metric properties [Vayer et al., 2020]

- \mathcal{FGW} defines a metric over structured data with measure and features preserving isometries as invariants.
- \mathcal{FGW} is a metric for q=1 a semi metric for q>1, $\forall p\geq 1$.
- The distance is nul iff:
 - There exists a Monge map $T\#\mu_s = \mu_t$.
 - Structures are equivalent through this Monge map (isometry).
 - Features are equal through this Monge map.

Other properties for continuous distributions

- Interpolation between \mathcal{W} ($\alpha=0$) and \mathcal{GW} ($\alpha=1$) distances.
- Geodesic properties (constant speed, unicity).

FGW Properties (2)

$$\mathcal{FGW}_{p,q,\alpha}(D,D',\boldsymbol{\mu_s},\boldsymbol{\mu_t}) = \left(\min_{\mathbf{T} \in \Pi(\boldsymbol{\mu_s},\boldsymbol{\mu_t})} \sum_{i,j,k,l} \left((1-\alpha)C_{i,j}^q + \alpha | \mathbf{D_{i,k}} - D_{j,l}'|^q \right)^p T_{i,j} T_{k,l} \right)^{\frac{1}{p}}$$

Bounds and convergence to finite samples [Vayer et al., 2020]

• The following inequalities hold:

$$\mathcal{FGW}(\mu_s, \mu_t) \ge (1 - \alpha) \mathcal{W}(\mu_A, \mu_B)^q$$

 $\mathcal{FGW}(\mu_s, \mu_t) \ge \alpha \mathcal{GW}(\mu_X, \mu_Y)^q$

• Bound when $\mathcal{X} = \mathcal{Y}$:

$$\mathcal{FGW}(\mu_s, \mu_t)^p \leq 2\mathcal{W}(\mu_s, \mu_t)^p$$

• Convergence of finite samples when $\mathcal{X} = \mathcal{Y}$ with $d = Dim(\mathcal{X}) + Dim(\Omega)$:

$$\mathbb{E}[\mathcal{FGW}(\mu,\mu_n)] = O\left(n^{-\frac{1}{d}}\right)$$

Application of FGW distance on structured data classification

Vector attributes	AIDS	BZR	COX2	CUNEIFORM	ENZYMES	PROTEIN	SYNTHETIC
FGW SP	99.44+/-0.47	85.12+/-4.15	77.23+/-4.86	76.67+/-7.04	71.00+/-6.76	74.55+/-2.74	100.00+/-0.00
FGW SP REGUL	-	85.61+/-5.05	77.66 + / -4.17	-	70.17+/-6.81	74.64 + / -2.99	-
FGW WSP	99.55 + / -0.35	84.88+/-4.34	78.09 + / -3.81	-	69.50 + / -7.30	75.09 + / -2.34	-
FGWDMM sp	-	84.39+/-5.48	76.81 + / -4.30	-	61.67+/-7.19	75.00 + / -2.59	-
FGWDMM wsp	-	83.17 + / -5.05	78.30 + / -3.53	-	59.17 + / -6.55	75.09 + / -3.03	-
HOPPER ALL CV	99.50+/-0.59	84.15+/-5.26	79.57+/-3.46	32.59+/-8.73	45.33+/-4.00	71.96+/-3.22	90.67+/-4.67
PROPA ALL CV	98.45+/-1.06	79.51 + / -5.02	77.66+/-3.95	12.59 + / -6.67	71.67+/-5.63	61.34 + / -4.38	64.67+/-6.70
PSCN k=10	99.80+/-0.24	80.00+/-4.47	71.70 + / -3.57	25.19 + / -7.73	26.67+/-4.77	67.95+/-11.28	100.00+/-0.0
PSCN k=5	99.85+/-0.23	82.20+/-4.23	71.91 + /-3.40	24.81+/-7.23	27.33+/-4.16	71.79+/-3.39	100.00+/-0.0

Graph classification

- Classifiation accuracy on classical graph datasets.
- Comparison with state-of-the-art graph kernel approaches and Graph CNN.
- We use $\exp(-\gamma \mathcal{FGW})$ as a non-positive kernel for an SVM [Loosli et al., 2015] (FGW).
- Train Wassertsein Distance Measure Machine [Rakotomamonjy et al., 2018] (FGWDMM).

Application of FGW distance on structured data classification

DISCRETE ATTRIBUTES	MUTAG	NCI1	PTC
FGW RAW SP	83.26+/-10.30	72.82+/-1.46	55.71+/-6.74
FGW WL H=2 SP	86.42+/-7.81	85.82+/-1.16	63.20+/-7.68
FGW wl $H=2$ sp regul	84.74+/-8.03	-	63.37 + / -6.75
FGW WL H=4 SP	88.42+/-5.67	86.42 +/- 1.63	65.31+/-7.90
FGW wl h=4 sp regul	86.42 + / - 8.81	-	63.83 + / -7.83
GK к=3	82.42+/-8.40	60.78+/-2.48	56.46+/-8.03
PSCN k=10	83.47+/-10.26	70.65 + / -2.58	58.34 + / -7.71
PSCN k=5	83.05+/-10.80	69.85 + / -1.79	55.37 + / -8.28
RW all cv	79.47 + / -8.17	58.63 + / -2.44	55.09 + / -7.34
SP all cv	82.95 + / - 8.19	74.26 + / -1.53	-
WL all cv	86.21+/-8.48	85.77+/-1.07	62.86+/-7.23
WL $H=2$	86.21+/-8.15	81.85+/-2.28	61.60+/-8.14
WL $H=4$	83.68+/-9.13	85.13+/-1.61	62.17+/-7.80

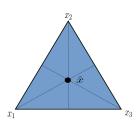
WITHOUT ATTRIBUTE	IMDB-B	IMDB-M
FGW RAW SP	63.80+/-3.49	48.00+/-3.22
GK K=3	56.00 + / -3.61	41.13 + / - 4.68
SP all cv	55.80 + / -2.93	38.93 + / -5.12

Graph classification

- Classifiation accuracy on classical graph datasets.
- Comparison with state-of-the-art graph kernel approaches and Graph CNN.
- We use $\exp(-\gamma \mathcal{FGW})$ as a non-positive kernel for an SVM [Loosli et al., 2015] (FGW).
- Train Wassertsein Distance Measure Machine [Rakotomamonjy et al., 2018] (FGWDMM).

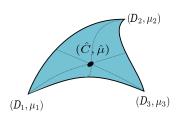
FGW barycenter

Euclidean barycenter



$$\min_{x} \sum_{k} \lambda_{k} \|x - x_{k}\|^{2}$$

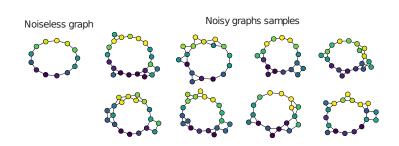
FGW barycenter



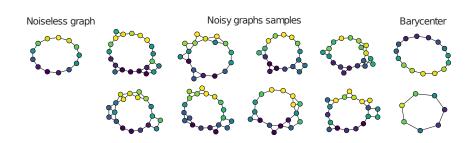
$$\min_{D \in \mathbb{R}^{n \times n}, \mu} \sum_{i} \lambda_{i} \mathcal{FGW}(D_{i}, D, \mu_{i}, \mu)$$

FGW barycenter p = 1, q = 2

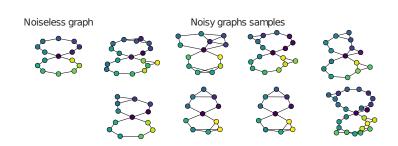
- Estimate FGW barycenter using Frechet means (similar to [Peyré et al., 2016]).
- Barycenter optimization solved via block coordinate descent (on $T, D, \{a_i\}_i$).
- Can chose to fix the structure (D) or the features $\{a_i\}_i$ in the barycenter.
- a_{ii} , and D updates are weighted averages using T.



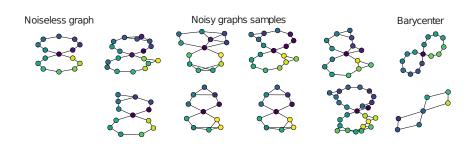
- We select a clean graph, change the number of nodes and add label noise and random connections.
- ullet We compute the barycenter on n=15 and n=7 nodes.
- \bullet Barycenter graph is obtained through thresholding of the D matrix.



- We select a clean graph, change the number of nodes and add label noise and random connections.
- ullet We compute the barycenter on n=15 and n=7 nodes.
- \bullet Barycenter graph is obtained through thresholding of the D matrix.

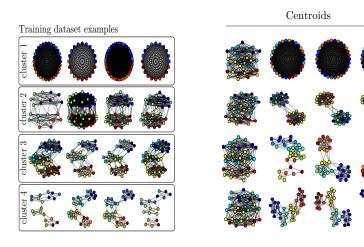


- We select a clean graph, change the number of nodes and add label noise and random connections.
- ullet We compute the barycenter on n=15 and n=7 nodes.
- ullet Barycenter graph is obtained through thresholding of the D matrix.



- We select a clean graph, change the number of nodes and add label noise and random connections.
- ullet We compute the barycenter on n=15 and n=7 nodes.
- \bullet Barycenter graph is obtained through thresholding of the D matrix.

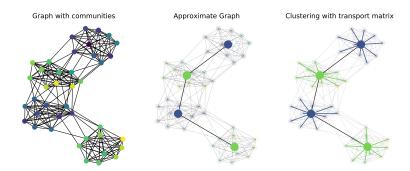
FGW for graphs based clustering



- ullet Clustering of multiple real-valued graphs. Dataset composed of 40 graphs (10 graphs \times 4 types of communities)
- ullet k-means clustering using the FGW barycenter

→iter

FGW baryenter for community clustering



Graph approximation and community clustering

$$\min_{\mathbf{D},\mu} \quad \mathcal{FGW}(\mathbf{D},\mathbf{D}_0,\mu,\mu_0)$$

- ullet Approximate the graph (\mathbf{D}_0,μ_0) with a small number of nodes.
- OT matrix give the clustering affectation.
- Works for signle and multiple modes in the clusters.

FGW baryenter for community clustering

Graph with bimodal communities

Approximate Graph

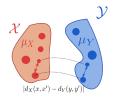
Clustering with transport matrix

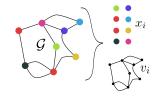
Graph approximation and community clustering

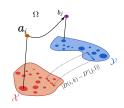
$$\min_{\mathbf{D},\mu} \quad \mathcal{FGW}(\mathbf{D},\mathbf{D}_0,\mu,\mu_0)$$

- ullet Approximate the graph (\mathbf{D}_0,μ_0) with a small number of nodes.
- OT matrix give the clustering affectation.
- Works for signle and multiple modes in the clusters.

GW and FGW for graph modeling







Gromov-Wasserstein distance [Memoli, 2011]

- Divergence between distributions across metric spaces.
- Can be used to measure similarity between graphs seen as distribution their pairwise node relationship.

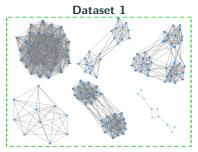
Fused Gromov-Wasserstein distance [Vayer et al., 2018]

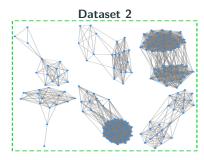
- Model labeled structured data as joint structure/labels distributions.
- New versatile method for comparing structured data based on Optimal Transport
- New notion of barycenter of structured data such as graphs or time series

How to sue GW/FGW to model data variability in a dataset of graphs?

Online Graph Dictionary Learning

Datasets of graphs



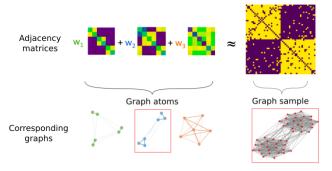


SBM with balanced communities $\{1, 2, 3\}$.

Two communities of variable proportions.

- We have access to large datasets of graphs with variable number of nodes.
- How to model the variability of those graphs?
- A natural formulation is to use factorization.
- We propose to use a linear model for representing te graph associated to and estimation of the linear basis: Dictionary learning.

Linear model

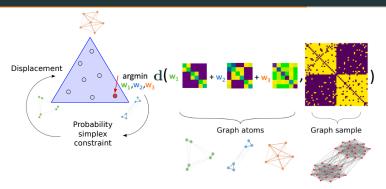


Linear modeling of graphs

$$D \approx \sum_{s \in [S]} w_s \overline{D_s} \tag{2}$$

- ullet Approximate a given graph structure D as a non-negative weighted sum of template graphs $\overline{D_s}$.
- ullet $\{\overline{D_s}\}_s$ is the dictionary of templates that all have the same order (nb. of nodes).

Gromov-Wasserstein Linear unmixing



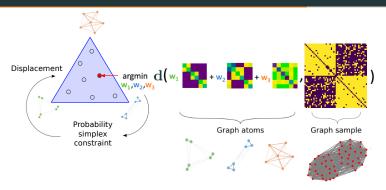
Sparse linear unmixing with Gromov-Wasserstein

$$\min_{\mathbf{w} \in \Sigma_S} \quad \mathcal{GW}_2^2 \left(\sum_{s \in [S]} w_s \overline{D_s} , D \right) - \lambda \|\mathbf{w}\|_2^2$$
 (3)

- Estimate the linear representation on the simplex w minimizing the GW distance w.r.t. the target graph D (non-negative unmixing).
- $\lambda \in \mathbb{R}_+$, negative quadratic regularization promotes sparsity on the simplex [Li et al., 2016] while keeping a nonconvex QP.

25 / 34

Gromov-Wasserstein Linear unmixing



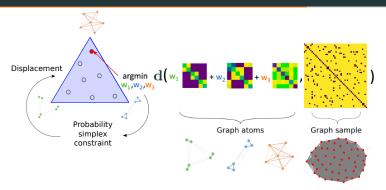
Sparse linear unmixing with Gromov-Wasserstein

$$\min_{\mathbf{w} \in \Sigma_S} \quad \mathcal{GW}_2^2 \left(\sum_{s \in [S]} w_s \overline{D_s} , D \right) - \lambda \|\mathbf{w}\|_2^2$$
 (3)

- Estimate the linear representation on the simplex w minimizing the GW distance w.r.t. the target graph D (non-negative unmixing).
- $\lambda \in \mathbb{R}_+$, negative quadratic regularization promotes sparsity on the simplex [Li et al., 2016] while keeping a nonconvex QP.

25 / 34

Gromov-Wasserstein Linear unmixing



Sparse linear unmixing with Gromov-Wasserstein

$$\min_{\mathbf{w} \in \Sigma_S} \quad \mathcal{GW}_2^2 \left(\sum_{s \in [S]} w_s \overline{D_s} , D \right) - \lambda \|\mathbf{w}\|_2^2$$
 (3)

- Estimate the linear representation on the simplex w minimizing the GW distance w.r.t. the target graph D (non-negative unmixing).
- $\lambda \in \mathbb{R}_+$, negative quadratic regularization promotes sparsity on the simplex [Li et al., 2016] while keeping a nonconvex QP.

25 / 34

Approximating GW in the linear embedding

GW Upper bond [Vincent-Cuaz et al., 2021]

Let two graphs of order N in the linear embedding $\left(\sum_s w_s^{(1)} \overline{D_s}\right)$ and $\left(\sum_s w_s^{(2)} \overline{D_s}\right)$, the \mathcal{GW} divergence can be upper bounded by

$$\mathcal{GW}_2\left(\sum_{s\in[S]} w_s^{(1)} \overline{D_s}, \sum_{s\in[S]} w_s^{(2)} \overline{D_s}\right) \le \|\mathbf{w}^{(1)} - \mathbf{w}^{(2)}\|_{\boldsymbol{M}}$$
(4)

with M a PSD matrix of components $M_{p,q} = \left\langle D_h \overline{D_p}, \overline{D_q} D_h \right\rangle_F$, $D_h = diag(h)$.

Discussion

- ullet The upper bound is the value of GW for a transport $T=diag(m{h})$ assuming that the nodes are already aligned.
- The bound is exact when the weights $\mathbf{w}^{(1)}$ and $\mathbf{w}^{(2)}$ are close.
- Solving \mathcal{GW} with FW si $O(N^3 \log(N))$ at each iterations.
- Computing the Mahalanobis upper bound is $O(S^2)$: very fast alterative to GW for nearest neighbors retrieval.

Graph Dictionary Learning

GDL optimization problem

$$\min_{\substack{\{\mathbf{w}^{(k)}\}_{k \in [K]} \\ \{\overline{D}_s\}_{s \in [S]}}} \sum_{k=1}^K \mathcal{G} \mathcal{W}_2^2 \left(\boldsymbol{D}^{(k)}, \sum_{s \in [S]} w_s^{(k)} \overline{\boldsymbol{D}}_s \right) - \lambda \|\mathbf{w}^{(k)}\|_2^2 \tag{5}$$

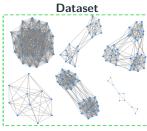
- ullet On a dataset of K undirected graphs $\{oldsymbol{D}^{(k)} \in S_{N^{(k)}}(\mathbb{R})\}_{k \in [K]}.$
- We want to estimate simultaneously the unmixing $\mathbf{w}^{(k)}$ of each graphs and the optimal dictionary $\{\overline{D}_s\}_{s\in[S]}$.
- Very similar to classical DL (Non-negative Matrix Factorization) approach but with GW as a data fitting term.
- We propose to solve it an adaptation of the online algorithm [Mairal et al., 2009]

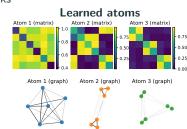
Stochastic/Online update [Vincent-Cuaz et al., 2021]

- 1: Sample a minibatch of graphs $\mathcal{B} := \{ oldsymbol{D}^{(k)} \}_{k \in \mathcal{B}}$.
- 2: Compute $\{(\mathbf{w}^{(k)}, T^{(k)})\}_{k \in [B]}$ from solving B independent unmixings.
- 3: Compute the gradient $\widetilde{\nabla}_{\overline{D}_s}$ on the minibatch with fixed $\{(\mathbf{w}^{(k)}, T^{(k)})\}_{k \in [B]}$.
- 4: Projected gradient step , $\forall s \in [S], \overline{D}_s \leftarrow Proj_{S_N(\mathbb{R})}(\overline{D}_s \eta_C \widetilde{\nabla}_{\overline{D}_s})$

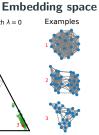
Experiments - Unsupervised representation learning

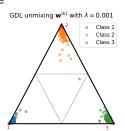
 \bullet Stochastic block model with $\{1,2,3\}$ blocks

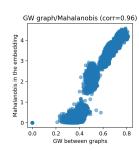




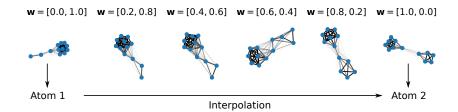
GDL unmixing $\mathbf{w}^{(k)}$ with $\lambda = 0$ Class 1 Class 2 Class 3



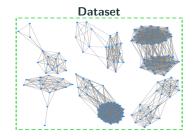




Experiments - Unsupervised representation learning



Learned Dictionary: Interpolation \sim 1D Manifold



- Stochastic block model with 2 blocks and varying proportions of block size.
- GDL with 2 atoms can recover the extreme points.
- Linear interpolation recover a continuous variation of proportion.

Experiments - Clustering benchmark

Table 1. Clustering: Rand Index computed for benchmarked approaches on real datasets.

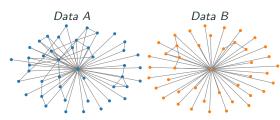
	no attribute		discrete attributes		real attributes			
models	IMDB-B	IMDB-M	MUTAG	PTC-MR	BZR	COX2	ENZYMES	PROTEIN
GDL(ours)	51.64(0.59)	55.41(0.20)	70.89(0.11)	51.90(0.54)	66.42(1.96)	59.48(0.68)	66.97(0.93)	60.49(0.71)
GWF-r	51.24 (0.02)	55.54(0.03)	-	-	52.42(2.48)	56.84(0.41)	72.13(0.19)	59.96(0.09)
GWF-f	50.47(0.34)	54.01(0.37)	-	-	51.65(2.96)	52.86(0.53)	71.64(0.31)	58.89(0.39)
GW-k	50.32(0.02)	53.65(0.07)	57.56(1.50)	50.44(0.35)	56.72(0.50)	52.48(0.12)	66.33(1.42)	50.08(0.01)
SC	50.11(0.10)	54.40(9.45)	50.82(2.71)	50.45(0.31)	42.73(7.06)	41.32(6.07)	70.74(10.60)	49.92(1.23)

Clustering Experiments on real datasets

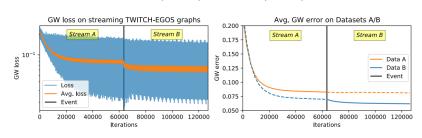
- Different data fitting losses:
 - Graphs without node attributes : Gromov-Wasserstein.
 - Graphs with node attributes (discrete and real): Fused Gromov-Wasserstein.
- We learn a dictionary on the dataset and perform K-means in the embedding using the Mahalanobis distance approximation.
- Compared to GW factorization [Xu, 2020] and spectral clustering.
- Similar performance for supervised classification (using GW in a kernel).

Experiments - Online Learning

- Streaming graphs: Stochastic update for each new incoming graph
- Dataset: TWITCH-EGOS
 - 120.000+ graphs
 - 2 classes
 - shared hub structure

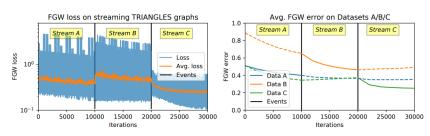


Simulated stream: data A (class 1) → data B (class 2)

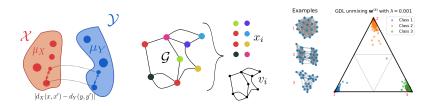


Experiments - Online Learning

- Streaming graphs: Stochastic update for each new incoming graph
- Dataset: TRIANGLES
 - 30.000+ labeled graphs
 - 10 classes
- Simulated stream: data A (4 classes) \rightarrow data B (3 classes) \rightarrow data C (3 classes)



Conclusion



Gromov-Wasserstein family for graph modeling

- \bullet Graphs modelled as distributions, \mathcal{GW} can measure their similarity.
- Extensions of GW for labeled graphs and Frechet means can be computed.
- ullet Nonlinear and linear dictionaries of graphs using \mathcal{GW} provide a good modeling.

Open questions

- ullet Stability of the ${\cal GW}$ plan to perturbations of D (related to the GDL upper bound).
- Use \mathcal{GW} as a "kernel" for structured prediction (\mathcal{GW} barycenters).
- Weights on the nodes are important but rarely available: relax the constraints [Séjourné et al., 2020] or even remove one of them (WIP).

Thank you

Python code available on GitHub:

https://github.com/PythonOT/POT

 $\bullet~$ OT LP solver, Sinkhorn (stabilized, $\epsilon-$ scaling, GPU)

• Domain adaptation with OT.

· Barycenters, Wasserstein unmixing.

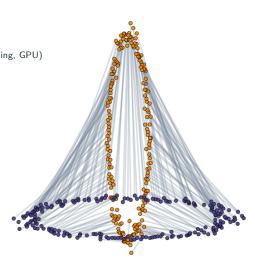
• Wasserstein Discriminant Analysis.

Tutorial on OT for ML:

http://tinyurl.com/otml-isbi

Papers available on my website:

https://remi.flamary.com/



Solving the unmixing problem

Optimization problem

$$\min_{\mathbf{w} \in \Sigma_S} \quad \mathcal{GW}_2^2 \left(\sum_{s \in [S]} w_s \overline{D_s} \right) - \lambda \|\mathbf{w}\|_2^2$$

- Non-convex Quadratic Program w.r.t. T and w.
- GW for fixed w already have an existing Frank-Wolfe solver.
- We proposed a Block Coordinate Descent algorithm

BCD Algorithm for sparse GW unmixing [Tseng, 2001]

- 1: repeat
- 2: Compute OT matrix T of $\mathcal{GW}_2^2(D,\sum_s w_s\overline{D_s})$, with FW [Vayer et al., 2018].
- 3: Compute the optimal ${\bf w}$ given ${\bf T}$ with Frank-Wolfe algorithm.
- 4: until convergence
 - Since the problem is quadratic optimal steps can be obtained for both FW.
 - BCD convergence in practice in a few tens of iterations.

GDL Extensions

GDL on labeled graphs

- For datasets with labeled graphs, on can learn simultaneously a dictionary of the structure $\{\overline{D}_s\}_{s\in[S]}$ and a dictionary on the labels/features $\{\overline{F}_s\}_{s\in[S]}$.
- \bullet Data fitting is Fused Gromov-Wasserstein distance $\mathcal{FGW},$ same stochastic algorithmm.

Dictionary on weights

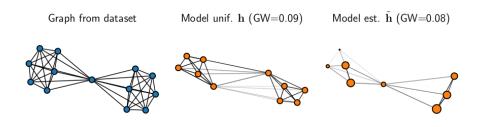
$$\min_{\substack{\{(\mathbf{w}^{(k)}, \mathbf{v}^{(k)})\}_k \\ \{(\overline{D}_s, \overline{h_s})\}_s}} \sum_{k=1}^K \mathcal{GW}_2^2 \left(D^{(k)}, \sum_s w_s^{(k)} \overline{D_s}, \boldsymbol{h}^{(k)}, \sum_s v_s^{(k)} \overline{h_s} \right) - \lambda \|\mathbf{w}^{(k)}\|_2^2 - \mu \|\mathbf{v}^{(k)}\|_2^2$$

• We model the graphs as a linear model on the structure and the node weights

$$(\boldsymbol{D}^{(k)}, \boldsymbol{h}^{(k)}) \longrightarrow \left(\sum_s w_s^{(k)} \boldsymbol{D}_s, \sum_s v_s^{(k)} \overline{\boldsymbol{h}_s}\right)$$

- ullet This allows for sparse weights h so embedded graphs with different order.
- ullet We provide in [Vincent-Cuaz et al., 2021] subgradients of GW w.r.t. the mass h.

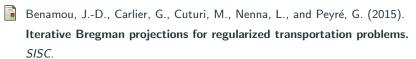
Experiments - Unsupervised representation learning



Comparison of fixed and learned weights dictionaries

- Graph taken from the IMBD dataset.
- Show original graph and representation after projection on the embedding.
- ullet Uniform weight h has a hard time representing a central node.
- ullet Estimated weights $ilde{h}$ recover a central node.
- In addition some nodes are discarded with 0 weight (graphs can change order).

References i



Cuturi, M. (2013).

Sinkhorn distances: Lightspeed computation of optimal transportation. In *Neural Information Processing Systems (NIPS)*, pages 2292–2300.

Genevay, A., Chizat, L., Bach, F., Cuturi, M., and Peyré, G. (2018). Sample complexity of sinkhorn divergences. arXiv preprint arXiv:1810.02733.

Kantorovich, L. (1942).

On the translocation of masses.

C.R. (Doklady) Acad. Sci. URSS (N.S.), 37:199-201.

References ii

Li, P., Rangapuram, S. S., and Slawski, M. (2016).

Methods for sparse and low-rank recovery under simplex constraints. arXiv preprint arXiv:1605.00507.

Loosli, G., Canu, S., and Ong, C. S. (2015).

Learning svm in krein spaces.

IEEE transactions on pattern analysis and machine intelligence, 38(6):1204–1216.

Mairal, J., Bach, F., Ponce, J., and Sapiro, G. (2009).

Online dictionary learning for sparse coding.

In *Proceedings* of the 26th annual international conference on machine learning, pages 689–696.

Memoli, F. (2011).

Gromov wasserstein distances and the metric approach to object matching. Foundations of Computational Mathematics, pages 1–71.

References iii

Mémoire sur la théorie des déblais et des remblais.

De l'Imprimerie Royale.

Gromov-wasserstein averaging of kernel and distance matrices.

In *ICML*, pages 2664–2672.

Rakotomamonjy, A., Traore, A., Berar, M., Flamary, R., and Courty, N. (2018).

Wasserstein Distance Measure Machines.

preprint.

Scetbon, M., Peyré, G., and Cuturi, M. (2021).

Linear-time gromov wasserstein distances using low rank couplings and costs.

arXiv preprint arXiv:2106.01128.

References iv

Séjourné, T., Vialard, F.-X., and Peyré, G. (2020).

The unbalanced gromov wasserstein distance: Conic formulation and relaxation.

arXiv preprint arXiv:2009.04266.

Solomon, J., Peyré, G., Kim, V. G., and Sra, S. (2016).

Entropic metric alignment for correspondence problems.

ACM Transactions on Graphics (TOG), 35(4):72.

Tseng, P. (2001).

Convergence of a block coordinate descent method for nondifferentiable minimization.

Journal of optimization theory and applications, 109(3):475–494.

Vayer, T., Chapel, L., Flamary, R., Tavenard, R., and Courty, N. (2018).

Fused gromov-wasserstein distance for structured objects: theoretical foundations and mathematical properties.

References v

Vayer, T., Chapel, L., Flamary, R., Tavenard, R., and Courty, N. (2020).

Fused gromov-wasserstein distance for structured objects.

Algorithms, 13 (9):212.

Vayer, T., Flamary, R., Tavenard, R., Chapel, L., and Courty, N. (2019).

Sliced gromov-wasserstein.

In Neural Information Processing Systems (NeurIPS).

Vincent-Cuaz, C., Vayer, T., Flamary, R., Corneli, M., and Courty, N. (2021).

Online graph dictionary learning.

In International Conference on Machine Learning (ICML).

Xu, H. (2020).

Gromov-wasserstein factorization models for graph clustering.

In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 34, pages 6478–6485.