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Graph Edit Distance

Graph Edit Distance

x
x x

h
G1

-

e1 = | → ε

e2 = − → ε

e3 = • → ε

x x
h -

e5 = • → •

x x
h -

e4 = ε→ \

x x
h@

@

G2
Example of edit sequence γ ∈ Γ(G1,G2)

Edit costs

Each edit operation ek is penalized by a cost c(ek)

GED(G1,G2) = min
γ∈Γ(G1,G2)

{∑
e∈γ

c(e)
}

(1)

= min
x

{1

2
x>∆x + c>x

}
(2)

= min
x

Q(x) (3)
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Graph Edit Distance

Graph Edit Distance

GED

Measures the amount and importance of modifications that are necessary
to transform one graph into another

When graphs represent molecules
⇒ GED can provide an accurate measure of similarity or dissimilarity
between two molecules
⇒ When all pairwise distances are computed within a set of molecules,
some classification or clustering might be performed, and some properties
might be predicted
⇒ A median graph of a group of graphs can be computed, hence helping
in finding a common ancestor to a set of molecules.
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Graph Edit Distance

GED as a Quadratic Assignment Problem

Find an assignment x between the nodes of the two graphs under the
following constraint :

u1
u2
u3
u4
εv1

εv2

εv3

v1
v2
v3
εu1

εu2

εu3

εu4

Nodes in G1 Nodes in G2

GED(G1,G2) = min
x

{1

2
x>∆x+ c>x

}
with cost matrices : ∆ for edge as-
signement and c for node assingment

Complexity

QAP, and thus GED computation is NP-hard.
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Frank-Wolfe / IPFP / mIPFP IPFP

Frank-Wolfe Algorithm

Gradient descent method to find the global minimum of a convex function

Principle

At each iteration k , we dispose of a current continuous solution xk :

1. Minimize linear approximation of Q around xk according to its 1st
order Taylor expansion

� bk = argminb∈Rn×m{b∇Q(xk)}
2. Step size determination by a line search

� γ∗ = minγ∈[0;1]{Q(xk + γ(bk − xk))}
3. Update current solution

� xk+1 = xk + γ(bk − xk)

Nicolas Boria Stochastically generated solutions for GED 2018 April, 20 7 / 22



Frank-Wolfe / IPFP / mIPFP IPFP

Frank-Wolfe Algorithm

A simple procedure to find a local minimum of Q, if not convex

� Method used in context of Graph Matching (IPFP) [Leordeanu et al.
2009]

� Also used for GED estimation [Bougleux et al. 2017]

� Converge generally to a local minimum

� Strongly impacted by the initialization
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Frank-Wolfe / IPFP / mIPFP IPFP

IPFP : Impact of the initialization

Figure: Example of a non-convex function

Non-convexity of Q

IPFP converges to a local minimum of Q. If Q is not convex, this
minimum is not necessarily global.

� Impact on time complexity : if x1 is far from a local minimum of
Q, there may be more iterations to converge

� Impact on accuracy : if Q is non-convex, the returned local
minimum depends on x1
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Frank-Wolfe / IPFP / mIPFP mIPFP

Multiple initializations : mIPFP

A parallel multistart approach based on IPFP.

Procedure

1. Generate a set of k assignments Sk

2. Compute the set of refinements {IPFP(x) | x ∈ Sk}
3. Return mIPFP(Sk) = minx∈Sk{Q(y) : y = IPFP(x)}

� Simple procedure

� Can be easily parallelized, as each IPFP is independent

� Several kinds of initializations are possible

� Significant improvement w.r.t. to ”single start” versions in terms of
distance for little to no computing time cost.
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Stochastic generation of new initial solutions

Two conflicting criteria for a better generator

Quality of IPFP relies mostly on the quality of the initial solution.
How can we produce better initial solutions for a parallelized algorithm ?

A good solution generator should follow the two conflicting objectives:

� Producing solutions that are ”far” from one another : exploration
criterion

� Producing solutions that are already good solution in terms of GED :
quality criterion
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Stochastic generation of new initial solutions

Our proposition for a better generator: RANDPOST(k,l)

The Algorithm we propose is a refinement of mIPFP : it consists in several
iterations of mIPFP where each new iteration generates k new solutions in
a stochastic fashion such that each assignment (i → j) is picked with a
probability roughly equal to:

Ψij =
#refined solutions that include(i → j)

#refined solutions

The randomness of the procedure answers the exploration criterion.

Pairwise assignments that are thought to appear in many good
solutions are made more likely to be picked by the algorithm in order
to answer the quality criterion
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Stochastic generation of new initial solutions

Our proposition for a better generator: RANDPOST(k,l)

General architecture of algorithm RANDPOST(k,l)

initial generation
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Experiments

Datasets

Dataset Number of graphs Avg Size

MAO 68 18.4
PAH 94 20.7
MUTA 10-70 10 10-70
ClinTox 25 115.7

� Monoamine Oxydase (MAO) dataset .This dataset is composed of 68
molecules divided into two classes: 38 molecules inhibit the monoamine
oxidase (antidepressant drugs) and 30 do not.
� Polyciclic Aromatic Hydrocarbons dataset (PAH) This dataset is
composed cyclic unlabeled graphs. All atoms are carbons, all bounds are
aromatics. This is a classification problem (cancerous or not cancerous
molecules).
� Mutagenicity Graphs (MUTA). Mutagen and non-mutagen molecules.
� ClinTox Dataset. Drugs approved by the FDA and those that have
failed clinical trials for toxicity reasons.
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Experiments

Benchmark

Save for results on ClinTox dataset, our results were compared to the
results of all 9 algorithms that participated to the Graph Distance Contest
(ICPR 2016).

- absolute errors were computed w.r.t. to the best solutions found
among all 13 algorithms (9 of contest + 4 versions of RANDPOST).

- For a given algorithm, ”% best” represents the proportion of pairs of
instance where the best GED among all 13 computed GEDs was
found.
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Experiments

Experiments - MAO,PAH & ClinTox

Metric Costs

Algorithms
MAO PAH ClinTox

time GED err. %best time GED err. %best time GED err. %best

RANDPOST(1,0) 0.021 30.97 6.84 16 0.025 26.73 14.64 1 6.474 178.73 26.80 0
RANDPOST(40,0) 0.089 24.16 0.03 98 0.117 21.23 9.13 19 18.453 161.77 9.84 4

RANDPOST(20,1) 0.144 24.14 0.01 99 0.182 21.09 8.99 21 30.881 157.35 5.421 15

RANDPOST(10,3) 0.172 24.17 0.04 99 0.263 20.90 8.80 24 51.467 154.72 2.79 39

RANDPOST(5,7) 0.237 24.36 0.23 94 0.439 20.84 8.75 25 76.794 153.06 1.135 70

Non Metric Costs

Algorithms
MAO PAH ClinTox

time GED err. %best time GED err. %best time GED err. %best

RANDPOST(1,0) 0.027 22.73 6.62 17 0.027 20.62 11.84 1 6.245 184.50 23.02 1
RANDPOST(40,0) 0.090 16.14 0.03 98 0.136 15.11 6.33 20 18.846 169.28 7.80 10

RANDPOST(20,1) 0.151 16.12 0.02 99 0.210 15.03 6.25 21 30.019 165.86 4.37 24

RANDPOST(10,3) 0.225 16.14 0.04 99 0.324 14.85 6.07 23 49.901 164.25 2.76 40

RANDPOST(5,7) 0.340 16.30 0.20 95 0.527 14.83 6.05 24 88.499 162.29 0.809 74
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Experiments

Experiments - MUTA Subsets - metric cost function

Algorithms
MUTA 10 MUTA 20 MUTA 30

time GED err. %best time GED err. %best time GED err. %best

RANDPOST(1,0) 0.013 13.27 1.29 71 0.026 22.01 3.15 23 0.075 32.45 8.19 0

RANDPOST(40,0) 0.024 11.98 0.00 100 0.089 19.00 0.14 86 0.254 25.68 1.42 39

RANDPOST(20,1) 0.040 11.98 0.00 100 0.150 18.93 0.07 93 0.452 25.40 1.14 39

RANDPOST(10,3) 0.069 11.98 0.00 100 0.223 19.01 0.15 88 0.714 25.17 0.91 50

RANDPOST(5,7) 0.123 11.98 0.00 100 0.364 19.11 0.25 81 1.103 25.35 1.09 53

Algorithms
MUTA 40 MUTA 50 MUTA 60

time GED err. %best time GED err. %best time GED err. %best

RANDPOST(1,0) 0.170 44.83 11.04 3 0.326 48.55 11.21 7 0.609 60.81 13.89 1
RANDPOST(40,0) 0.602 36.07 2.28 24 1.181 40.10 2.76 20 2.898 50.64 3.72 13
RANDPOST(20,1) 1.089 35.08 1.29 43 2.075 39.06 1.72 34 4.914 49.39 2.47 26
RANDPOST(10,3) 1.819 34.87 1.08 46 3.621 38.55 1.21 49 6.545 48.25 1.33 48

RANDPOST(5,7) 2.820 34.57 0.78 60 6.059 38.06 0.72 58 11.091 47.66 0.74 65

Algorithms
MUTA 70 MUTAmix

time GED err. %best time GED err. %best
RANDPOST(1,0) 1.378 75.28 16.22 1 4.972 140.16 5.98 19
RANDPOST(40,0) 4.297 63.90 4.84 15 0.876 136.32 2.14 36
RANDPOST(20,1) 7.665 62.13 3.07 22 1.444 135.54 1.36 50
RANDPOST(10,3) 12.678 60.52 1.46 48 2.434 135.35 1.17 53

RANDPOST(5,7) 18.815 60.29 1.23 59 3.495 134.69 0.51 70
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Experiments

Experiments - MUTA Subsets - anti-metric cost function

Algorithms
MUTA 10 MUTA 20 MUTA 30

time GED err. %best time GED err. %best time GED err. %best

RANDPOST(1,0) 0.013 23.34 0.88 77 0.019 36.30 2.46 42 0.054 48.62 7.80 4

RANDPOST(40,0) 0.035 22.46 0.00 100 0.089 33.90 0.06 97 0.247 42.31 1.49 45

RANDPOST(20,1) 0.062 22.46 0.00 100 0.144 33.94 0.10 95 0.428 41.93 1.11 54

RANDPOST(10,3) 0.125 22.46 0.00 100 0.247 33.94 0.10 95 0.546 41.59 0.77 65

RANDPOST(5,7) 0.229 22.46 0.00 100 0.386 34.06 0.22 90 0.769 41.86 1.04 61

Algorithms
MUTA 40 MUTA 50 MUTA 60

time GED err. %best time GED err. %best time GED err. %best

RANDPOST(1,0) 0.123 66.78 9.08 11 0.284 67.67 11.53 5 0.457 83.39 13.05 2
RANDPOST(40,0) 0.570 59.45 1.75 33 1.288 59.23 3.09 23 2.385 73.58 3.24 21
RANDPOST(20,1) 0.898 58.97 1.27 50 2.093 58.14 2.00 33 4.481 72.96 2.62 27

RANDPOST(10,3) 1.461 58.76 1.06 57 3.819 57.82 1.68 47 6.798 71.93 1.59 44

RANDPOST(5,7) 2.119 59.14 1.44 48 5.848 57.49 1.35 54 9.580 71.48 1.14 63

Algorithms
MUTA 70 MUTAmix

time GED err. %best time GED err. %best
RANDPOST(1,0) 1.149 102.91 16.25 0 4.973 106.43 4.95 27
RANDPOST(40,0) 4.228 91.68 5.02 10 1.046 103.65 2.17 43
RANDPOST(20,1) 6.854 89.73 3.07 28 1.786 102.78 1.30 58

RANDPOST(10,3) 10.300 88.66 2.00 46 2.628 102.39 0.91 70

RANDPOST(5,7) 15.548 88.01 1.35 58 3.509 102.35 0.87 65
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Conclusion

Conclusions and future work

Summary

� Allows to generate a great number of initial solutions in little time.

� Improvement w.r.t. simple multistart method, especially on graphs
with 30+ nodes

� By design, less parallelizable that simple multistart.

Future work

1. Test the method with different kinds of initialization methods

2. Test different kinds of Ψ-based probability distributions

3. Make the algorithm choose which criterion (exploration or quality) to
favor based on the Ψ indices.

4. Make the method more parallelizable
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