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Expressive Power of GNN

◉ Universality of the GNN depends on 
○ ability to produce same output for isomorphic  graphs (invariance).
○ ability to produce different output for non-isomorphic graphs.
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Expressive Power of GNN

◉ WL test iteratively passes the node color to its neighborhood. 
◉ 1-WL=2-WL <3-WL<4-WL<......<k-WL
◉ We can classify GNN by equivalence of WL test order
◉ k>2, k-WL GNN needs 

○ O(n^(k-1)) memory
○ O(n^k) CPU time
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MPNN  (i.e 1-WL equivalent GNNs)

◉ MPNN are still attractive because of ;
○ Linear memory&time complexity.
○ Natural problems consist of graphs can be distinguishable by 1-WL.
○ 300 out of 61M graphs pairs are not indistinguishable by 1-WL GNN.
○ Their results are still state of the art!

◉ WL test order cannot tell any superiority between MPNNs
◉ We need another perspective to evaluate MPNN’s expressive 

power.
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What is MPNN
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MPNN finds new representation



Spatial MPNN
◉ Forward calculation of one layer Spatial MPNN
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Graph Signal Processing
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Laplacian of Graph

Eigenvector and eigenvalues

Any signal can be written by weighted sum of these base functions



Spectral Graph Filtering 
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Spectral MPNN
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Forward calculations of one layer non-parametric Spectral MPNN

Forward calculations of one layer parametric Spectral MPNN



Bridging the Gap Between Spectral and Spatial MPNN

◉ Spectral Method defined by 
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◉ We proposed new framework to generalize both approaches.

◉ Spatial Methods are defined by C matrices

Spectral to Spatial transition

Convolution support Node Representation Trainable Params



Bridging the Gap Between Spectral and Spatial MPNN

◉ Trainable or Fixed supports
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Bridging the Gap Between Spectral and Spatial MPNN

◉ Definition of Spatial & Spectral MPNN
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◉ Spatial to Spectral transition



Some MPNN Models

◉ Vanilla Graph Convolution

◉ Molecular fingerprints[1], NIPS. 2015 

◉ Patchy-San [2], ICML. 2016
○ Nauty: Find cardinal ordering of neighbors

◉ GraphSage [3], NIPS 2017

Row normalized adjacency
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Some MPNN Models

◉ GCN[4], ICLR. 2017

◉ ChebNet[5]  NIPS 2017

◉ GAT[6],  ICLR, 2018

where
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Some MPNN Models

◉ Monet[7], CVPR2017

◉ SplineCNN[8], CVPR2018

◉ Gated GCN[9], 2018
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Some MPNN Models

◉ CayleyNet[10], IEEE Transaction on Signal Proc, 2019

◉ GIN[11], ICLR 2019

◉ Custom Designed Spectral GNN[12], ICML 2020 Workshop 

Where                  designed by custom manner (problem specific). 17



Spectral Analysis of some MPNNs
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Spectral Analysis of some MPNNs
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Chebnet[5], Spectral Designed, Fixed Support
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CayleyNet[10]  Spectral Designed, Trainable Support
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GIN[11]  Spatial Designed, Trainable Support
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GCN[4]  Spatial Designed, Fixed Support
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GAT[6]  Spatial Designed, Trainable Support



Our Conclusion on Frequency Responses

◉ Spatial MPNN is nothing but just low-pass filter!
◉ Spectral MPNN cover the spectrum well but not have band 

specific filters
◉ Most of the natural graph problems need low-pass effects.
◉ If the signal on graph matters, spectral methods are best!
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Experiments

◉ 2DGrid graph
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Experiments

◉ BandClass 
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Experiments

◉ MNIST-75

30



Summary of Our Contributions

◉ Bridging the gap between Spatial-Spectral MPNN
◉ Show how to do spectral analysis of GNN.
◉ Show spatial MPNN is nothing but low-pass filter.
◉ Propose new taxonomy on GNN. 
◉ Put a new criteria on theoretical evaluation of expressive 

power of GNN.

https://github.com/balcilar/gnn-spectral-expressive-power
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