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Expressive Power of GNN

Universality of the GNN depends on
ability to produce same output for isomorphic graphs (invariance).
ability to produce different output for non-isomorphic graphs.
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Expressive Power of GNN

WL test iteratively passes the node color to its neighborhood.
1-WL=2-WL <3-WL<4-WlL«.....<k-WL

We can classifty GNN by equivalence of WL test order
k>2, k-WL GNN needs

O(n"(k-1)) memory

O(n"k) CPU time



MPNN (i.e 1-WL equivalent GNNSs)

MPNN are still attractive because of ;

Linear memory&time complexity.
Natural problems consist of graphs can be distinguishable by 1-WL.

300 out of 6IM graphs pairs are not indistinguishable by 1-WL CNN.
Their results are still state of the art!

WL test order cannot tell any superiority between MPNNs
We need another perspective to evaluate MPNN's expressive

power.



What is MPNN

OEEE
2(1) Adjacency Matrix
x (2) 01000000
x(3) 10100100
| 01010110
X_> x(4) 00101000
x (5) 00010100
x (6) 01101010
x (7) 00100101
x(8) | 00000O0T10

A

X € R"*4 is node features
E € R*»*™*¢ is edge features :

A € R"*" is adjacency matrix.

MPNN finds new representation

HWED = f(HO A, E)
HO =X



Spatial MPNN

Forward calculation of one layer Spatial MPNN

agg aggregates the neighborhood nodes.

H:(1i+1) — upd(go(H:(zf)),a g(gl(H(zlL)) LU € N(’U))),

upd updates the concerned node

go, g1 : R/t — R™*/i+1 trainable models. N (v) is the set of neighborhood nodes



Graph Signal Processing

Laplacian of Graph [, = [ — D—1/2 A)—1/2
ULU = diag(A4, 45, ..., 1)

Eigenvector and eigenvalues
0=A <A <

15t eigenvector, value=1.4701e.16

Any signal can be written by weighted sum of these base functions

2nd sigenvector, value=0,0019344

. < An

3th esgenvector, value=0.0018344

30th

eigenve

ctor, value=0.80938
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Spectral Graph Filtering

L filtered — Udzag(F (A))UT:B’

)‘emﬂr/ignal T \ Input signal
1
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q 0.8} . e .
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Spectral MPNN

Forward calculations of one layer non-parametric Spectral MPNN

fi
1™ =0 (Z Udiag(Ff"”)UTHf”) . forje{l,..., fun}

=1

F(L3) ¢ R™* /i i the corresponding weight vector to be tuned

Forward calculations of one layer parametric Spectral MPNN

1=
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Bridging the Gap Between Spectral and Spatial MPNN

We proposed new framework to generalize both approaches.

H(l+1) - 0( C(S)H(l)‘/VQK

Convolutién support Node Representation Trainable Params

Spatial Methods are defined by C matrices

Spectral Method defined by B; ; = ®,(\;)

Spectral to Spatial transition C(®) = U diag(®,(A))U . y



Bridging the Gap Between Spectral and Spatial MPNN

Trainable or Fixed supports

Definition 1. A Trainable-support is a Graph Convolution Support C*) with at least one trainable
parameter that can be tuned during training. If C®) has no trainable parameters, i.e. when the

supports are pre-designed, it is called a fixed-support graph convolution.
In the trainable support case, supports can be different in each layer, which can be shown by C(::*)
for the s-th support in layer /. Formally, we can define a trainable support by:

(c<l=8>) — he, (H.(,{,XH.(;) EW A).

y Houuo

where Eil)u shows edge features on layer [ from node v to node w if it is available and h(.) is any
trainable model parametrized by (s, [).
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Bridging the Gap Between Spectral and Spatial MPNN

Spatial to Spectral transition

Corollary 1.1. The frequency profile ®S (A) — diag_l (UTC(S) U) o

Definition of Spatial & Spectral MPNN

Definition 2. A Spectral-designed graph convolution refers to a convolution where supports are
written as a function of eigenvalues (P 4(\)) and eigenvectors (U ) of the corresponding graph Lapla-
cian (equation|6). Thus, each convolution support C'®) has the same frequency response ® ;(\) over
different graphs. Graph convolution out of this definition is called spatial-designed graph convolu-
tion.

13



Some MPNN Models ;0+1) _ ”(Z C<s>H<l>W(z,s>)

Vanilla Graph Convolution
G =A+1

Molecular fingerprints|[1], NIPS. 2015

COHD =1, CW=subsetof Aaccording to node type

Patchy-San [2], ICML. 2016
Nauty: Find cardinal ordering of neighbors

) = I,/C(”) = (n — 1) neighbours connections.
GraphSage [3], NIPS 2017

cl) =T c@= 4 Row normalized adjacency

.
/
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Some MPNN Models ;0+1) _ U(Z C<S>H<1)W(z,s>>

—~

GCNI4], ICLR. 2017
c=DpD-12ip-12 where A= (A+I) p,,=%, 4,

ChebNet[5] NIPS 2017

COH =7 C® =2L/Anax — I c® = 20®ct-1 _ gk-2)
GAT[6], ICLR, 2018

C,,;(,lj’-s) = softmax; (U(a[WH,fl)HWHJ(.l)]))

15
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Some MPNN Models ;0+1) _ J(Z C<s>H<l)W(z,s>>

Monet[7], CVPR2017

C»zgli) = Aoes;(Ey,.), Wwhereeg(.)is trainable function for s-th support’s I-th layer.

SplineCNNI[8], CVPR2018

C (I,5,8) — Ao Os.1.i (ELLL> , where g, ; ;(.) is trainable function for i-th input band, s-th support’s [-th layer.

v,U

Gated GCNI9], 2018

cW =1, 2= Aop (Hm 240 E(”)
. v, U v ol ] v,U 16



Some MPNN Models ;0+1) _ ”(Z C(S>H<1>W(z,s>>

CayleyNet[10], IEEE Transaction on Signal Proc, 2019

CM =1
C?") = Re(p(hL)")
c@™+D = Re(ip(hL)")

GINI[11], ICLR 2019

C =A+(1+¢l € is trainable parameter

Custom Designed Spectral GNN[12], ICML 2020 Workshop

C) = U diag(®,(A\))U .

Where @,(A) designed by custom manner (problem specific).

.
/



Spectral Analysis of some MPNNs

Theorem 2. The theoretical frequency response of each support of ChebNet can be defined as

2

A max

(I)I(A) = 11 (I)Z(A) —

— 1, Dp(A) =282(AN)Pr—_1(A) — Pr_2(A),

where 1 is the vector of ones and ... is the maximum eigenvalue.

Theorem 3. The theoretical frequency response of each support of CayleyNet can be defined as

1 i g=il
D (X)) = ¢ cos(50(hA)) ifs€ {2,4,...,2r} (
—si11(“‘;10(12./\)) ifs € {3,5,...,2r+1}

where h is a trainable scalar and 0(x) = atan2(—1, ) — atan2(1, x).
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Spectral Analysis of some MPNNs

Theorem 4. The theoretical frequency response of GCN support can be approximated as
D(A) ~ 1 — AP/(F +1),

where P is the average node degree in the graph.

Theorem 5. The theoretical frequency response of GIN support can be approximted as

1 .
@(A)zﬁ( +€+1—>\>

P

where € is a trainable scalar.
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Table 1: Summary of the studied GNN models.

Design Support Type  Convolution Matrix Frequency Response

MLP Spectral Fixed =1 P(A)=1

GCN Spatial Fixed C=D"%5%54Ap"05 P(A)~1-Ap/(P+1)

GIN Spatial Trainable C=A+(1+¢€¢)l P(AN)=p ( 1%"' +1-— A)

GAT Spatial Trainable Cih=euul Ticrinem NA
c =1 P3(A) =1

CayleyNet®  Spectral Trainable C(7) = Re(p(hL)") ®5,.(A) = cos(r8(hA))
C@rtD) = Re(ip(hL)") P2r41(A) = —sin(ré(hX))
cH =1 P () =1

ChebNet Spectral Fixed V) = 9 R ] ®3(A) =22/ Amax — 1

Cc®) —20@s=1) _ 0(s=2) P (A) =2P2(A)P_1(A) — Ps_2(A)

“p(x) = (z—il)/(z +il)

20



Chebnet[5], Spectral Designed, Fixed Support

c) =

C?) = 2L/ Amax — I

c) —o0@)(s=1) _ o(s=2]

Magnitude

Chebnet empirical freq response on Cora

Convolution Supports

&5 3y =1
B2(A) = 22X /Amax — 1
¢S(A) — 2(D2(A)(I)S—I(A) - (PS—Z(A)

Chebnet theoretical freq response

Magnitude

eigenvalues Convolution Supports 21



CayleyNet[10] Spectral Designed, Trainable Support

C(l) = I @1(A)=1

C?") = Re(p(hL)") Do, (A) = cos(rf(h))

glletl) _ Re(ip(hL)") Pory1(A) = —sin(ré(h))
CayleyNet empirical freq response on Cora CayleyNet theoretical freq response

Magnitude
o
o wn =

09\@ Magnitude
\

2
S

eigenvalues 3

n Supports Convolution Supports 22



GIN[11] Spatial Designed, Trainable Support

magnitude

C =A+(1+¢€)!

empirical freq response of GIN on Cora

1

eigenvalue

1.5

epsilon

() ~

epsilon= -2

empirical
theoretical

—|—1—A)

epsilon= -1

1
Eigenvalue

epsilon= 0

empirical
theoretical

).
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empirical
theoretical
1
Eigenvalue
epsilon= 1
empirical
theoretical

1
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GCNJ[4] Spatial Designed, Fixed Support

C ®(A) &1 - Ap/(F+1)

empirical and theoretical freq response of GCN on Cora
1

empirical freq response
theoretical freq response

0.9
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Magnitude

0.4 r

0.3

*f".l{r')
va) ~ v 0.2}
les 01(( :
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(a) GCN frequency profiles 0 = ; e 5
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GAT[6] Spatial Designed, Trainable Support

O, = el Srestiw) vk

138 1 slr
- Standard Deviation 185 18

—— Mean

Magnitude

Magnitude

1 L L I I
a 02 04 05 0s 1 12 14 16 138 2 aQ 02 04 0.6 08 1 12 14 16 18 2

Eid genv. alues Eigenvalue Eigenvalue

(a) Expected frequency response (b) Heat density map of learned fre- (¢) Heat density map of learned fre-
from Simulation on Cora quency response on ENZYMES  quency response on PROTEINS
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Our Conclusion on Frequency Responses

Spatial MPNN is nothing but just low-pass filter!

Spectral MPNN cover the spectrum well but not have band
specific filters

Most of the natural graph problems need low-pass effects.
If the signal on graph matters, spectral methods are best!

26



Experiments

2DGCrid graph

®1(p) = exp(~100p%) P2(p) = exp(=1000(p = 0.5)) gy(p) = 1 — exp(—10p?)

low-pass images band-pass images high-pass images




Ground truth

Prediction

Experiments

ChebNet

Prediction Target GCN GIN GAT ChebNet
Low-pass filter (&) 1555 11.01 10.50 3.44
Band-pass filter (P5) 79.72 63.24 79.68 17.30
High-pass filter ($3) 29.51 14.27 29.10 2.04
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Experiments

BandClass

Table 5: Test set accuracy and binary cross entropy loss.
MLP GCN GIN GAT ChebNet

Accuracy 50 7790 87.60 85.30 08.2
Loss 0.69 0454 0273 0324  0.062

29



Experiments NS
@ : . 2 ®
MNIST-75 e g

Node feature
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Table 2: Test set accuracies on MNIST superpixel dataset

MLP GCN GIN

GAT CayleyNet  ChebNet

Node degree

Pixel value
Both

11.2940.5 15.81+0.8 32.45+1.2

31.72+41.5 45.61+1.7 46.23+1.8

12.1140.5 11.35+1.1 64.96+39 62.61+2.9 88.41+2.1 91.10+1.9

251012 5298+31 75.23%4:1

82.73+2.1 90.31+2.3 92.08+2.2
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Summary of Our Contributions

Bridging the gap between Spatial-Spectral MPNN

Show how to do spectral analysis of GNN.

Show spatial MPNN is nothing but low-pass filter.
Propose new taxonomy on GNN.

Put a new criteria on theoretical evaluation of expressive
power of GNN.

https://github.com/balcilar/gnn-spectral-expressive-power

31
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