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Introduction

Static Representation / Sequence Representation of Data

A static representation is commonly an observation or a description of the data in a fixed size,
n-dimensional, real valued, feature space.

Supervised classification : we seek to find an optimal discriminator between the categories,
or classes, that are assigned to the data (labeled data), by exploiting this n-dimensional real valued
representation, vector space.

Unsupervised classification: we seek to determine some structures in the data by
examining this n-dimensional real valued representation (observation) only.
Unlabeled data: no information about classes!

R
("]

)

Possible solutions are:
Supervised classification : SVM, KNN, NN, DeepNN, Decision Trees, Random Forest, etc...
Unsupervised classification: GMM, K-means, fuzzy k-means, GAN etc...
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Introduction

Static Representation / Sequence Representation of Data

A sequence representation is an ordered representation of observations of variable length T.
The position in the sequence matters, it is denoted by the variable t

0= (0102 o ...OT)

Discrete observation sequences
observations belong to a finite set of symbols or €V ={v,vy,, vy}

Character strings encoding a language (M = 100)

Word sequences (M = 10K...50K...)

Ex: Language translation, Natural Language Processing (NLP),
Textual Information Extraction (IE),

Input text Output semantic framee for “mass lesion”
|
| CHEST CT - 271454 Frame [D: RpG-mass kesioa-1 type: ABNORMALITY
FINDINGS: | Exam ID: 12448 date21494  typest
Th Ered nass lesionfatiun the postenor segments o the Nght Upper JoOEAR: Tope .
'niixe. It mow measures 5.3 x 8 x 8 cm (previously 48 x 6.7 x 6 em) _ | Exstesce PR certnty: DEFINITE  ewidence: OBSERVED
It contains areas of high attenuation presumed to represent surpeal suture e B relaticn: IN
staples. The posteromedial aspest of this kesion contacts the pleura.  Locston  oleuns relation: BORDERING
L Sue AR
| Size LEFT_RIGHT EXTENT $3 UNITS OM

ANTERIOR POSTERIOR EXT: &0 UNITS: OM
CEPHALOCAUDAL EXTENT: &0 UNITS: O
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Introduction

Static Representation / Sequence Representation of Data

Continuous observation sequences
sequence of variable length
observations are made of N measurements
each measurement is a real valued sample

011021 Or1  O11

0:(0102...Ot...0T) OtERN 0=
O1NO2N  OtN  OTN
Example:
Raw speech signal, n=1 measurement every 1/8000 sec (Fe=8 KHz)

— M"“——"""‘”m A e A b

"w L1 w L} " l, " L “" " -o L 2 1§ " L5 ) () ik L)

Short term spectrogram, cepstral coefficients : n=39 cepstral coefficients over a sliding
window of 256 samples (32 ms)

ormaslic
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Introduction

Applications
Speech recognition | Pen Based Computing
— ' Mobile Interfaces
PDA
Gesture recognition in videos 3D gestures recognition
sign language Kinect, games and animation
. AN 2 —— S Ansdety
. - }':‘ H .'g ‘.',’v. § .1' _.}‘-
- s '\ ), & L
I N 0y X SN N
.‘.: . 4 k .4:“:
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Introduction

Static Representation / Sequence Representation of Data

We are interested to process the sequence representations for two main purposes

with a variable size

1. Labeling the sequence as a whole entity : assign a label (many to one):
classification
representation

detection
and classification

with a variable size
representation

2. Labeling the components of the sequence and obtain a
sequence of labels (more general problem, many to many):
04D L 2%

multiple decisions

Handwriting recognition from images
. . 0450430036
Information extraction from raw textual data along the sequence
..and responsability. John Smith, chief financial officer of prime coorp since.
Per Per Pos Pos Pos I I I I
/ ormaslic
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Introduction

Static Representation / Sequence Representation of Data

General formulation of the sequence labeling problem (problem2)

Look for the best label sequence 7+ = (wiw; °-°W; W]*) wj € {l,1,,-,133=D

that can be associated to the observation sequence () — (0105 - 04 +--07) Of € RN

W* = argmax P(W|0)
w

The sequence of labels W may not have the same length as O

D is the set of possible output labels, lexicon of possible words
d = 20K,40K, 60K.... in case of natural language

Example of speech signal

input observation o T AN Y < -

A

output label sequence W* the chief financial officer of prime coorp

Example of handwriting image

Olitis
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Introduction

Static Representation / Sequence Representation of Data

General formulation of the labelling problem

PO\W)P(W
W* = argmax P(W|0) = argmax&m%(r) ocargmax P(O|W)P(W)
w w w

P(0|W) is the data attachment model (acoustic model, image model ....)
P(W) is the language model
We need to design two kinds of models

Language models : n-grams, RNN
Data attachement models: HMM, NN-HMM, RNN

Towards End to End models : RNN + RNN
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Statistical language models (LM)

We focus our attention on how to model sequences of words of a language
so as to design efficient models capable of estimating the probability of a
certain sequence of words to occur

i.e. compute P(W) where W= (W1W2 co Wi "'WI)

Language modelling is the art of determining the probability of a sequence of words (Joshua, 2001).
The Shannon game of guessing the next letter or next word in a text (Shannon 1951)

The model is sufficiently general to apply to any type of sequence, not only words
=> sequence of characters, gene sequence, efc...

The principal assumption for building a language model is to consider that words have
some specific collocations. They do not occur independently one from the other

Examples
strong tea peine de mort
weapons of mass destruction carte de sejour
death penalty conseil des ministres

white house
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Statistical language models (LM)

_ W= (W1W2_“'_Wi'”W1) _
We assume that collocations of words occur within a certain context of the words,

or history of the words denoted by h;=(w;w, ---w;_4) for word w;

Then, the probobability of the sentence is the product of the word probabilities in their respective contexts
171!
PW)=II;=1 P(w;lh;)

Problem: a very large number of histories, and subsequently a very large number of
probabilities to estimate

Solution: regroup histories by equivalence classes colled n-gram denoted by ¢(h;)

such that the following approximation holds : P(w;|h;) = P(w;|¢p(h;))
n-gram are sequences of n consecutive words ¢(h;) = (Wj_pq1 -+ Wi—aWi_1W;)

The probabilities P(w;|h;) = P(w;|w;_+1 - W;_, w;_,) are the parameters of the LM

Assume d=#D=20K words and n=2 (bigrams) there is 20 000 X 19 999 = 400 10° parameters

and n=3 (trigrams) there is 20 000? X 19 999 = 8 1072 parameters

and n=4 (four-grams) there is 20 000° X 19 999 = 1.6 10" parameters
n-gram models require a huge amount of parameters to be estimated, even for small dictionary size, and
small history. Large datasets of text exemples are required to have correct estimates of these quantities
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Statistical language models (LM)

Statistical Estimators of n-gram LM
Notations
N amount of training words

i
Wi_nt1  then-gram  w;_,. 1 w;_qw;

C(w/_n4+1) the number of occurrences of n-gram

We want to estimate the following quantities P(wl|wl n+1) from the observation of a
training corpus of text.

The Maximum Likelihood estimator (MLE)

C(Wz n+1)

Pure (Wi|wiZpi1) 7?)
n+1
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Statistical language models (LM)

Assume the following training corpus
<s> JOHN READ MOBY DICK </s>

<s> OPEND READ BOOK LIBRARY </s>

<s> MARY READ A DIFFERENT BOOK </s>
<s> SHE READ ABOOK BY CHER </s>

The probability of the sentence "JOHN READ A BOOK" is the following, with n = 2.

P(< s > JOHN READ A BOOK < \s >) = P(JOHN| < s >)P(READ|JOHN)P(A|READ) P(BOOK|A) P(< \s > |BOOK)

c(<s>10HN)>< C(JOHN READ) % C(READ A) C(A BOOK) C(BOOK <\s>)
] ]

—— e X E——————
C(<s>) C(JOHN) C(READ) C(A) C(BOOK)
1 1 2 1 1 1
=g XmX s X s X s =smmm =~ (0,0208
4 1 4 2 3 3X16

Limitation : MLE estimates assign 0 probability to unseen events

We look for better estimators able to affect low probability to unseen events

=> Introduce smoothing in the estimation

C litis 'I )nrnm.\lir



Statistical language models (LM)

A smooth estimator has two components : a discounting model and a redistribution model

The discounting model is used to deduct a small amount of the probabilities allocated to the
word sequences that are present in the training set.

Probability re-distribution is the process of affecting some values to unseen n-gram

Linear discounting

Linear discounting consists in taking a fraction of the probability of a n-gram, according to its
number of occurrences in the training set.

C(w X1 .
LD(W |Wl 1 _ {m lf C(Wil—n+1) > 0

i=n+1 C( i-n+1

otherwise

where r is the discounting factor (slightly lessthanone) o0<r<1

The total probability mass kept aside of the seen events on the training corpus is
ZC(Wii ) MLE(W |W1 n+1) ZC(W ) LD(W |W1 n+1) =1-r

\3 litis 'i )urnm.slir



Statistical language models (LM)

Absolute discounting
Absolute discounting consists in discounting a fixed value to the number

of occurrences of n-grams in the training set.

(C(Wii n+1) = .
- if C(w/i_ >0
AD(W |Wl n+1) — C Wil—_n+1 f ( L n+1)
0 otherwise

D is the fixed discounting factor

The total probability mass kept aside of the seen events on the training corpus is

i- n+1' Wi n+1 >04|xD
Pan it e

l n+1

Zefut_p,) e (WiWisnen) = Tt )

{witai:C(wizt,) >0} s the number of distinct word histories preceding word w;
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Statistical language models (LM)

Probability redistribution
Goal : Affect some non null probabilities to unseen events by redistributing the
previously discounted probability mass to the events seen in the training corpus

The back-off model of probability redistribution
Estimate the probability of an unseen n-gram by exploiting the probability of a lower

order n-gram. i.e. going back to (n-1) gram if seen, otherwise (n-2) gram if seen,
otherwise (n-3) gram if seen etc...

The model can use any type of discounting estimators (Linear, absolute,....)

;{'(Wl n+1)PBaCk Off(W |Wll 71+2 if C(Wii—n+1) =0
PBack Off(W |Wl n+1) —

DlSC(W |Wl n+1 if C(Wii—n+1) >0

_ PLD(Wi|Wii—_Tll+1)
with PDlSC(W |WL n+1 = or i1
PAD(Wilwil—_n+1)

A(w! the back-off weights, computed so that probabilities sum to 1

\3 litis 'i )urnm.slir



Statistical language models (LM)

Language model evaluation

Assume the test dataset T of N sentences, M words
LM estimates the probability of each sentence W P(wW)

We can derive the probability of T P(T)=[Tg=1 P(W¥)

The best LM is the one that assigns the highest probability to the test dataset

The cross entropy evaluates how different the language model is with the equiprobable
distribution.

1
Hyp(T) =-m L0g,P (T)

This is the average number of bits required to encode the M words of the dataset

The perplexity is the average number of words that can follow the current word. It tells
how much the LM hesitates in the prediction of the next word.

PPy (T)=2H1m (D)

PP, (T)=k means there are on average, k equally likely words after a word
The lower the perplexity the better the LM

C litiS 'i )nrnm.\lir



Statistical language models (LM)

Available tools for statistical LM training and evaluation

SRI LM : https://www.sri.com/engage/products-solutions/sri-language-modeling-toolkit
MIT LM : http://projects.csail.mit.edu/cgi-bin/wiki/view/SLS/MITLMTutorial

You can train a LM with one of these toolkit and export the LM using a standard DARPA format

Most of the platform for speech processing and training are supporting these formats

C litiS 'I )nrmmlir



Data Attachment models

General solution to the labeling problem

PO\W)P(W
W* = argmax P(W|0) = argmax&m%(r) ocargmax P(O|W)P(W)
w w w

P(0O|W) is the data attachment model (acoustic model in case of speech,
graphic model in case of handwriting)

P(W) is the language model

We now concentrate on the possible data attachement models
v' Hidden Markov models : the historical first model applied to speech in the 80’s

v Hybrid Neuro-Markov models 90’s
v" Pure Neuronal models thanks to the introduction of Recurrent Neural Networks (RNN)

C litiS 'i )nrnm.\lir



Andrei Markov
1856-1922

The Markov hypothesis

Idea: the probability of a character in a text in highly conditioned by the
preceding characters

P(Q) = P(% QQQ3°-°QT)

The law of conditional probabilities writes

P(q,9,95...97) = P(q; ‘%%---QT-l)P(%%%"-QT-1)

The first order Markov assumption writes

P(q,|9,9,---9,.) = P(q,|q,.,)

Thus the probability of the whole sequence can be factorized as follows

T
P(q,9,95...9;) = P(q, )HP(% q,.1)
1=2

Notice : the first order Markov hypothesis highly reduces the computational complexity

Olitis

but it is often too simple to model real, Language models use n-gram models of higher
order at least 2 or 3, but 10 or more are possible models.
Order 1 => bi-grams order 2 => tri-grams  order n-1 => n-grams
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The Hidden Markov Model (HMM)

It is a generative model that describes how the label sequence Q can generate the

observation sequence O. The two sequences have a same length T
It is represented by an oriented temporal graph (local label are represented by circles,

while local observations are not). D | B e
The arrows represent conditional probabilities @
l ' ' ' ' 2 -0
0, 0, 0, Or_, Or
Model hypotheses

T
1- 1st ordre label dependencies over time P(Q)=P(q, )HP(%

q,.)

1=2
2- Conditional independence of observations P(O‘Q,M) = p(o, ‘% )p(OZ‘QZ)”'p(OT‘qT)

The model factorizes as P((),Q|M) = ﬂqlnp(ot q,)r(q,1q,.,)
t

C litiS 'i )nrnm.wlir



HMM Parameters

A HMM is stationary: conditional probabilities do not change over time

Hidden States or labels. 9, €S S= {51 ’S2'”SK}
.. P . P
Transition probabilities & |S1) (SK|SI) Ay e G
P(S1|SK) P(SK|SK) iy oo S ) Isk<K

Initial probabilities T=(z,)=(P(g =s)) > m =1

For discrete observations 0, EV V={V1, v, .. VM}

Emission probabilities POi[s) POsfs) - POwls)
B=(P(0, =v,Js,)) -

P(vl‘sN) P(vz-‘sN) P(vﬁ;‘s,v)

(K.M)

C litiS 'i )nrnm.\lir



. . N
For continuous observations 0: € R

Olitis

HMM Parameters

Emission probabilities : one Gaussian Mixture Models (GMM) per state

pocla: =50 = ) P(Cie) ¥ (0 iy, Zom)

K XM N-dimensional Gaussians...

K = 26 character x 10
M = 10...20 Gaussians per state
N =50

=> 2600 Gaussians (clusters)

1<m<M

25
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Olitis

HMM as a dynamic model

We can represent the model by a an Oriented Graphical Model showing the
stationary conditional dependencies over time (from t to t+1)

example of a 3 states and 2 discrete observations model
S = {sl ,sz,s3}

V={v1,v2}
o, €V
q, €S

P(0t=Vl P(0t=V2 qt=s3)

qg, =8

P(q, = s, |qt—l =5;) = a4

'I )nrnm.s-lir



Various HMM Topologies

Ergodic

A -_—
Q3 43 dyz Ay
A, Gy dy 4y
a, a, O 0
Left nght Ao 0 a, a; O
0 0 a; ay
0O 0 0 a,
Bakl s a, a, a; 0
a a a
Ao 2 Gy Ay

Parallel
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Tasks related topologies

ﬂﬂ\

[

e
h ll { || Sequential models for seq to seq problems

...and responsability. John Smith, chief financial officer of prime coorp since.....

| | Per Per Pos Pos Pos | | | |

Ergodic model for text labeling (IE)
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Inference Algorithms with HMM

Inference : Look for a solution to a certain problem through a lattice of hypothesis

.
/ T.1
11
I
I 2
11
11

Viterbi : Which is the best sequence of hidden states ? Q" = argmaxP(O,Q‘M)
0

Forward : What is the likelihood of the observation sequence ? P(O‘M)

Forward-Backward : What is the local state posterior at time t ? m

O litiS 'I )nrnm.\'lir



Viterbi inference (1967)

Andrew James Viterbi
1935-...

00, .. O, O 0. .. O
i 0 N S I N PN .
A'EHEENENEMAMSMN
Y OC B XN BN BN AE B E.
> Eo- B N N M N §°
Wl W ad N B
HEELSIHEN

A/ (0 BN BN BEN BN BN KON

We look for the optimal sequence Q that best « explains » the observation.

Among the KT possible state sequences, we look for the most probable one

Q* = argmax(P(O,Ql.

i=1,. KT

M))

Direct computation is intractable but can take benefit of the time lattice structure so as to factorize
sub-paths when computing the cost of a path i.e. state sequence

P©0,0[M)=x,] | plo,

This product can be decomposed into elementary probabilities (always >0).
This quantity is monotonically decreasing.

Qt )p(qt Qt—l )

The Dynamic Programming (DP) principle can apply (Richard Bellman 1950)
« The global optimum is composed of local optima »

Define o ()= max (P(o1 0,05...01 .41 G G5- -G :4M)) the partial solution till t

919291

The one time step optimum is 6: ()= max(('jt_l(j)aﬁ)bi (Oz)
j

Complexity is reduced from KT to K2 X T

C litiS 'i )nrnm.wlir



The Viterbi algorithm (1967)

Initialisation
61 (k)=ﬂkbk(01) l<=sk<K
qﬁ (k) =0

Recursion

6,(k)=max(8,,(a, )b (0,) 1sisK 2=i=T
; _

Y, (k)=argmax(5t_l(j)ajk) l<=sk<K 2=t=<T
Termination J

P* = max (5T (k))

qT = argmax(éT (k))
Best path decodg.ng (backtracking)

Best implementation when using log probabilities instead of probabilities, so as to
avoid multiplications.

C litis 'I )nrnm.\lir
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The Viterbi Algorithm (1967)

lllustration o, ()= max(d_l(j)aﬁ)bi (0,)
j

t t+1

The optimal path is unknown till the last column is reached P*:max(5T(j))
J
Then we can compute the last state of the best path q; = argmax(éT(j))

Then we can retrieve the previous states of the optimal path, if the optimal local paths have
been stored in the variable 1/) t(1)

L=y, ()= argr_nax((i_1 (j)aﬁ)

'i )c wrmaslic



O, O. O, O O, O.

VE D . S B N G .

The Forward Inference e

i 1 B B B B B .
What is the likelyhood of the observation sequence? P(O‘M)

T - S N B . O -

W EEN BN ECDN BEE BN BN N I
.. regardless the hidden states

= sum over every possible paths  P(O|M) = E P(0,Q,|M) :KT possible paths!
= factorize the comon sub-paths 1si,<K”

P(010203---0; g, = k‘M) is the probabily of observing the beginning of the sequence until time t
and reaching state k (cell (t,k) of the lattice)

It is the sum over every possible sub-paths reaching state k at time t

This is a « forward » probability
(forward till k,t)

a, (i) = P(0,0,0;,...0, ,q, = i‘M)
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Course 3 : Forward Inference

at one time step, there are only N possible paths coming from t-1

\|

EEHEIR YRR
)

XN B I N W
A

HEEIE"2
21 1 |

os] 4 - 1”1 1 11

Sk

and we can write  P(0,0,...0,,q, = i‘M) = E P(o,0,...0,_,,q9,_, = k‘M)akl.bl.(ot)

1=k=K
Thus the following recursion ¢, (i) = E a_ (k)a,b. (0,)
1<k<K

and finaly P(0|M)= E o (k) complexity T x K? instead of KT !
Isk=K
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The Forward Algorithm

Forward Algorithm

Initialisation
a,(k)=m, xb (0,) k=1,..K

Recursion for t=2:T

I,..,.K

a (k=Y a,(ayb (o)  k

Termination

PO|M) = a, (i)

Qlitis 4 juillet 2018 Sequential Data Analysis (Th. P) 30 f
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o 0, .. O, O 0. .. O
y oot @ - N B B N § |
- 11 1 71 7 7 J |
U X3 I . .
Ao f -3 N 0 §B-0 |
T 1 1
BN BN N BN BN B b .

v Qoosly N - N N _§ BN |

The Forward-Backward Inference

What is the a posteriori probability of state sk at time t ?

The local posterior knowing the global observation

= Sk, O|M)

- denominator: P(O|M) = ar(k)

1<k<K

we write  y¢(k) = P(qr = s¢|O0, M)_P(qt

The numerator writes : P(g, = sy, O|M)=P (0103 -0y, q¢ = SkIM)XP(0¢+10¢+2 - 0rld¢ = 5k, M)

then  P(q; = sg, O|M)=a, (k)X (k)

with (k) = P(0¢+10¢+2 ** orlqe = S, M)

The « backward » probability
of observing the end of the sequence till time t+1
while beeing in state K at time t.

\3 litis 'i )urnm.slir



Course 3 : The Forward-Backward Inference

One time step backward, there are N possible paths and we write

P(0,,,0,,,..-01 |‘L =k,M)= E b, (0,,))P(0,,,0,,5..07|q,,, =1, M)

1<i<sK

Thus we can write a backward recursion :

B, ()= a,;b,(0,)B..(0)

l=isK

and the following formulas hold

POM)=Y B (k)

1=k<K

POIM)="Y a,(k)p, (k)

1=k<K

ce e

— 1 .
A
/A
K-<=H
B\
O\
B

POM)= Y o, (k)

1sk<K
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Course 3 : The Forward-Backward Inference

Finaly the a posteriori probability writes :

t k t k
e(k) = P(q; = 5k10, M) gy a, (K)B, (k)

but also :
ae(k)Be(k)
k) =
ve(k) Zlgisxatidﬁthi
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Training a HMM

Is/=sN
We have a set of N training sequences 0={OISZSN}={( ol o .. o ) }
!

We want to model it by a HMM M = {A,B,II}

The best model gets the highest likelihood (Maximum Likelihood (ML) criterion)

L
: l —
M* = argmax ‘ ‘P(OZ|M) with P(0'|M) = Z ar(k)
M =1 i<k<K
Problem: Computing the criterion requires the model to be known, and thus the statistics about the
hidden states, or knowing the hidden states that are responsible for having generated each example.

This knowledge is missing, we don’t know the sequence of labels (states) associated to each
observation sequence (similar to unsupervised classification, but considering temporal depencies).

Solution: Extend the unsupervised classification techniques to sequences (Clustering, EM algorithm)
Introduce the unknown label sequence of each observation sequence Ql

0= {OISZSN} is the set of observation sequences : the incomplete data

Q={QISISN} is the set of label sequences : the unknown data

Z =(0,0) isthe setof the complete data

C litiS 'I )nrnm.s-lir



Note :

Training a HMM

The EM Algorithm

Initialisation: - define one initial model pf0 (random guess, or k-means)
-seti=0 _
E Step (Expectation): Estimate the missing data (the missing labels) using the current model M'

P(% = Sk|0l, Mi)z a; (K)B: (k)

. a ]
1<jsK T,
M Step (Maximisation): compute a better model )fi*1 by improving the likelihood criterion

LV(Z, M|MY) = %100, ¥o Log (P(0%, Q" = |M)) P(0', @ = o|M?)

If LVi> LV then
i=i+1 , goto step E

else \* = ML
End

If the missing labels were known the criterion would simplify to

LV(Z,M) = log(P(0,QIM)) = log(TT1<1<. P(0%, Q' = Q|M)) = X111 Log (P(Ol Q' = Q|M1))
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Qlitis

Training a discrete HMM

Finaly, with N training observation sequences

The general re-estimation formulas of discrete HMM are

1 i

* 1.

T, =— Vl(l)
N 1=1

=1 t=1

5325 (@J) i a,(Dagb; (0,)B,,(j)

i 7, () EEa DB ()

=1 t=1 =1 t=1
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Training a continuous HVMIM

Use EM algorithm with the following reestimation formulas during M step

T T T
Zy/t (J,k) 27/1 (jak)'ot Zyt (j7k)°(0t _/ujk)(oz _:ujk)t
Cir = TtZIM My = tZIT ) jk = = T
Z,Z ¥, (Js1) 2.7 (k) 2.7 (k)
t=1 [=1 =1 t=1
| ]
Wlth 7/t (]’ k) — Naz (])ﬂt (.]) McjkN(Ot ’lujk’zjk)
DICACIAV) | 2N, 1. )
The transition matrix A is estimated as in the discrete case
7-1 7-1
Zét (19 J) Zat (Z)ayb] (0t+l)ﬁt+l (]) 1 N
a; =75 == ;= NE%I (0
Z}/t (l) Zat (Z)ﬁt (l) =1

t= t=1
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Training a HMM

The ML criterion

Over-training:
The model overfit the training dataset with the risk to degrade on the test dataset (unseen data)

Ovoid over-training using a validation dataset during training
From the whole training W dataset build two subsets T & V: W =T+ V = Training + Validation

Training on T with Likelihood criterion = Lt

Overtraining is detected when Error E on V starts increasing
Early Stopping criterion : E, > E,*' orE, > E,*" fori=i,, ... ,i,*N

stop

training |—
here

Extension : Cross-validation
Repeat the experiment on multiple partitions of W : Ai + Vi then average the performances

(}litis 4 juillet 2018 Sequential Data Analysis (Th. P) 40
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Training a HMM

Initialization :

Performance of the model depend on the initial model chosen to start EM
- A and © do not influence much

- Initial value for B is prominent

- initialize B through a clustering technique (GMM) with no care for temporal information
- eventually use Viterbi to train a first model

Model complexity :
Care about the number of free parameters to be estimated

- minimiser la complexité du modele pour une meilleure estimation
solution 1: few states, small alphabet, few Gaussians in the mixture
solution 2: introduce structural zero probabilities

(left-right, Bakis....)
solution 3: introduce tied states that share the same mixtures

O litiS 'I )nrnm.\'lir



Embedded Training

Train sub-units models (characters, phones...) in a continuous, unsegmented stream of data

Only give the ground truth at the word, line, or paragraph
Gather the missing statistics (E-step) with the whole HMM (word, line, paragraph)

Update the parameters of the involved sub-units only M-step

i=0 .
Intitialize M*
Kile I increases do
Regin .
LQF each training example do
build the HMM (concatenation of sub-units)
compute forward et backward variables

update L
update the statistics of the sub-units involved

Tk -1 Tk -1
ks ko
DEGH et Yyt
=1 =1
estimate new model parameters M*lof every sub-units

sod

There is no proven result that convergence will reach optimal sub-units
Only convergence towards a better global model (EM convergence)
But works rather well for unsegmented data !!
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HMM toolkits ressources

HTK : Hidden Markov Model Toolkit for continuous speech recognition
The historical reference toolkit, initially developped by microsoft, transfered to Cambridge University,
not maintained anymore.

Include many functionalities for speech decoding, not only training HMM
Include HMM decoding using large lexicons and n-gram language models, and grammars

Have a look at the tutorial !

KALDI : a more recent toolkit designed at the Johns Hopkins, Baltimore (USA), by Daniel Povey
and his team

Similar to HTK but still supported and having new developments
Very large lexicons are supported during decoding, in addition to high order language models,
thanks to using weighted finite states transducers (WFST) allowing encoding lexicons and language

model by WFST of characters.

We will give more insights about continuous speech and handwriting recognition algorithms
later in this course.
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http://htk.eng.cam.ac.uk/
http://kaldi-asr.org/doc/

Hybrid Neuro-HMM

They have been introduced in the continuous HMM framework so as to replace the GMM.

GMM are generative models trained to model each class, with unknown labels

they estimate the data likelihood P(X|s,) = 2 P(Cj)N(XI,u'j;Zj)

1<jsM
NN are discriminative models, requires known labels

they estimate class posteriors P(C,|X) (softmax activation on the last layer)

Hidden states sk are the classes Ck to be discriminated by the NN

Introduce normalized likelihood scores at the output of the NN

P(s [X)XP(X)  P(sc1X)

P(X = I
o) == P ()

We expect HMM working with high dimensionnal input features
Have better performance due to discriminative training of the data model

How to train the NN with unknown labels ?

C litiS 'I )nrmmlir



Training a Neuro-HMM

Similar to HMM using EM Algorithm

Initialisation: - define one initial model M0 & (49, 1%, NN©) random guess, or k-means)
-seti=0 _
E Step (Expectation): Estimate the missing data (the missing labels) using the current model M'

P(g} = 5| 0", M) meielBe L)

1<js<K “Tl

M Step (Maximisation): compute a better model )fi*1 by improving the likelihood criterion Ly(z,M|Mi)

update A, IT* similarly to a HMM
train NN *! using the local posteriors of the HMM as the desired outputs <t1 CUEE ) ---tx>

zlsjsl{ aTlcS

need to modify the last layer update training formula of the NN (by considering every labels)

one should prefer in this case using the cross-entropy criteria
k - it O= _Z(X,T)ETrainzk tklnyk
I=i+1

If LVi> LV then goto step E

else M*,NN* —_ Mi, NNi Stop
End

O litiS 'Dnrlml.\‘h'r
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Recurrent Neural Networks (RNN)

Recurrent Neural Networks have the hability to recognize patterns in sequential context by the
introduction of recurrent units, and layers of recurrent units. They perform similar tasks as HMM or
Neuro-HMM.

a single cell unit j of a RNN

of is the output of unit j at time t
6 (Uj) 6 is the activation function of unit j at time t

Ni—1 N
Woj; + Z WX + 2 W(i+Nl_1)jOit_1 w;; the weights of unit j + the recurrent weights
i1 P w,, its bias
ONl
Xeo (Xq¢ Xop oo Xjp o Xy p_jt ) the input vector of unit j

Computs a non-linear transformation of its inputs and its past outputs: need to memorise the past
output of the cell to compute the forward pass

A reccurrent layer
every cell is recurrent with itself and
any other cell of the layer

\’) litis 'I )nrnm.\'lir



Recurrent Neural Networks (RNN)

A RNN architecture is typically composed of
- The input layer, fed by the observation vector xtat time t,
- The recurrent layer, fed by xtand by its previous output ot-1
- The output layer (softmax),which provides the class a posteriori probabilities 114 unfolded RNN through time
- The network, that moves forward through time
Y11 Vit

Vi1 |... | Vit
VK1

Vit
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Course 4 : Recurrent Neural Networks (RNN)
for sequence analysis

Training a RNN with Back propagation through time (BPTT)
We can look at the unfolded network through time

output layer O is a layer, not a cell

hidden layer

input layer

X1 - cee Xt an e XT
the gradients of the error at the hidden layer at time t depends on the gradients of the error at the output
layer but also on the gradients of the error at the next time step (t+1) thus the name error back propagation
throught time BPTT.

Lt — I+1,t ., 141 Lt+1 |, 1 Lt
5]' —(Zk=1,...,Nl+15k wig +Zk=1,...,Nl5k Wik)gl(vj)

Since weights are independent of time, we must sum the gradients over time,
to get the weights update formula

[ R Lt 1-1.t
Wi = Wy Adit=1,.1 6]' Xy

The output layer weights update formula is unchanged

6jL+1,t — _QI(VjL+1,t)(tj‘t _ y]”t)
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Bidirectional RNN

Standard RNN make a prediction at the output layer, by taking benefit from past observations, but
there are many applications for which the future observations are known. For example every

applications for which real time decisions are not necessary.
We would like to take benefit from the future observations to make a better decision

1- introduce the future context by looking multiple time steps ahead, but introduce more weights, but a
fixed context

Training a Bidirectional RNN

1. Backward pass of the output layer

2. Backward pass of the forward layer
3. Backward pass of the backward layer

\’} litis 'I)urnm.\'fir



Long Short-Term Memory

The gradient vanishing problem
Feed Forward Neural Networks achieve classification tasks with at most 2 Hidden Layers. 00000
However, attempts to train Neural Network architectures with more layers 000000
have been confronted to gradient vanishing during the backward pass. S

The gradient is small and its value decreases through the layers, ¥ 000 o
thus training the first layers is difficult. Deep Learning has been introduced (2007), to 6000000
overcome this limitation (un-supervised pre-training one layer after the other,
Fine tuning the whole Network at last, introducing ReLu units). 00000
Support training with very large datasets...

PP J yar 00000

Recurrent Neural Networks, although introduced many years ago, have been confronted with the
gradient vanishing problem from their conception, as they need to learn sequential data. The depth of
the unfolded network is equal to the longer sequence to be analyzed. Thus the gradient vanishes
through time, and the network cannot learn long time dependencies, which was the expected strength
of such networks compared to HMM.

,\-,,\’ ’ I . ‘ ) .
e R R ere
e
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Long Short-Term Memory

Long Short-Term Memory cells (mémoire longue a court terme)

have been introduced by Hochreiter & Schmidhuber (1997) so as to encompass the limitations of
standard RNN

Ideas: introduce a memory mechanism (to prevent vanishing values) with update policy

there are 3 recurrent control gates
with sigmoid activation functions

1 standard recurrent unit with
sigmoid or tanh

‘ C memory cells (C=1)
Othere are M memory blocs

‘ his preferably a tanhactivation

S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural Computation , 9(8):1735-1780, 1997.

ormasltic
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Long Short-Term Memory

Long Short-Term Memory cells (mémoire longue a court terme)
have been introduced by Hochreiter & Schmidhuber (1997) so as to encompass the limitations of

standard RNN
Ideas: introduce a memory mechanism (to prevent vanishing values) with update policy

Xeo(xbod oxfxh)

S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural Computation , 9(8):1735-1780, 1997.
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Long Short-Term Memory

Long Short-Term Memory cells (mémoire longue a court terme)
have been introduced by Hochreiter & Schmidhuber (1997) so as to encompass the limitations of

standard RNN
Ideas: introduce a memory mechanism (to prevent vanishing values) with update policy

t — t t—1
ac - Zwic xi + Z Wmcbm

i=1
bt = g(al)

Xeo(xbod oxf o xh)

S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural Computation , 9(8):1735-1780, 1997.
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Long Short-Term Memory

Long Short-Term Memory cells (mémoire longue a court terme)
have been introduced by Hochreiter & Schmidhuber (1997) so as to encompass the limitations of

standard RNN
Ideas: introduce a memory mechanism (to prevent vanishing values) with update policy

Xeo(xbod ooxfoxp)

S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural Computation , 9(8):1735-1780, 1997.
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Long Short-Term Memory

Long Short-Term Memory cells (mémoire longue a court terme)
have been introduced by Hochreiter & Schmidhuber (1997) so as to encompass the limitations of

standard RNN
Ideas: introduce a memory mechanism (to prevent vanishing values) with update policy

4
st =byst™* + bfb.
V4 3
,1 I M c
ay = ZWL-¢ xf + z Wing iyt +ZWC¢S§‘1
| i=1 m=1 @=il
by = f(ag)
2 ¢ ¢
1 M c 1
af = Wi+ ) Wbl ) wst? , §
=1 m=1 c=1
ag = ZWL'C xlt + Z Wmcbrtn_1
i=1 m=1
b; = f(a}) bi = g(ab)

)

S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural Computation , 9(8):1735-1780, 1997.

(s t
X (x1%5 cox) Xg
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Long Short-Term Memory

Long Short-Term Memory cells (mémoire longue a court terme)
have been introduced by Hochreiter & Schmidhuber (1997) so as to encompass the limitations of

standard RNN
Ideas: introduce a memory mechanism (to prevent vanishing values) with update policy

5
! M | 4
at, = ZWiw x; + Z Winebi ! +Zchs
i=1 m=1 c=1 Sp = bé,sct '+ bfb;
3
b\fv = f(aﬁv) I M c
ay = ZWL-¢ xf + z Wing iyt +ZWC¢S§‘1
i=1 m=1 @=il
by = f(ag)
2 ¢ ¢
1 M @ 1
=St Syt o .
=1 m=1 c=1
ag = ZWiC xlt + Z Wmcbrtn_1
i=1 m=1
bi = f(af) bé = g(as,)

X, (xbxl xtxp)

S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural Computation , 9(8):1735-1780, 1997.
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Long Short-Term Memory

Long Short-Term Memory cells (mémoire longue a court terme)
have been introduced by Hochreiter & Schmidhuber (1997) so as to encompass the limitations of

standard RNN
Ideas: introduce a memory mechanism (to prevent from vanishing values) with update policy

Output
5 I M 4
=) Wi+ ) Wbt + ) Weust ST
i=1 m=1 c=1 S¢ = bgs¢™ + by bg
3
b\fv = f(aﬁv) I M c
ay = ZWL-¢ xf + z Wing iyt +ZWC¢S§‘1
i=1 m=1 @=il
by = f(ag)
2
1 M C 1
at = ZWU x; + Z w,, bt t +ZWC 1 B
=1 m=1 c=1 ;
at = Zwic x; + z Winebb 1
1= =1
bt = f(a) bt = g(ab) :

)

S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural Computation, 9(8):1735-1780, 1997.

t.t t
X, (X1X5 o Xf w0 X)
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Training a LSTM with CTC

Training LSTM with Connectionist Temporal Classification
Training any RNN, like training any NN, requires having the ground truth at each time step to be
known. This cannot be considered as it is too tedious a task to label sequetial data at such a low level.

Generally one provides the ground truth at word, or sentence level (speech or handwriting)

Similarly to HMM or Neuro-HMM we could use the Forward-Backward EM Embedded Training

algorithm
E. Senior, T Robinson, Forward Backward retraining of recurrent neural networks, Neural Information Processing Systems, 1996.

Alex Graves introduced a variant of the Forward Backward Embedded Training algorithm, called the
Connectionist Temporal Classification (CTC).
+ The HMM layer is reduced to an automaton where transitions between states have 0/1
weight (no transition probabilities anymore).
* Introduce an additional specific blank state acting like a non character state

A ground truth sequence of characters is modified to include a blank label between characters.

vouloir -V-0-U-|-0-i-r-
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Training a LSTM with CTC

CTC automaton alignment
During training we force the RNN to align to the paths accepted by the automaton only

The network may recognize a character spanning multiple frames

[T

TTVVem mOmmmUm e o --=--0---1----T--- two accepted paths
-V VW V-0000--UUUUU-- III ll-000--i-rrrrrr-

Notice that by the introduction of the blank label we are not able to locate the characters
anymore
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Training a LSTM with CTC

Training RNN with CTC

Assume the local class conditional posteriors are independant, thus the probability of a path is the
product of the local class posterior probabilities

--VV-- --0---U------ -~ Il ----0---i----r--- one accepted path T
P(m|X) = 1_[ YVt Yzt the probability of the class on 7 at position t
we denote by [ the labelling sequence : [ = -v-0-u-l-0-i-r-

Then the probability of the network to produce the labelling whatever the path
is the sum over every possible paths accepted by the CTC automaton

P(llX) = z P(m|X) with F~1 (1) the set of accepted paths matching the sequence [

meF ~1(D)
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Training a LSTM with CTC

Training RNN with CTC

We can represent the CTC automaton with a binary transition matrix 4 encoding the possible paths along
the labeling from one character (or state) to the next in the labelling.

1if transition all

A= (aij)-,-= 22U +1 with i = {O otherwise

Then, the forward probability of a partial labelling /(7:j) ending at position j with state /(j) knowing the
observation X until position ¢ writes

a(t,j) = PXU(L: )|xg ... X¢)

And we can write the following recursion
2U+1

a(t,j) =Ygt z a(t —1,i)aj;

=1

With the initial conditions
a(1,1(1) = yina
a(1,1(2)) = ni@)a
a(LU(i)=0 Vi>2
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Training a LSTM with CTC

Training RNN with CTC

Similarly we can write the backward probability Initial conditions ,B(T 2U + 1) —1

B(LI() =0 Vi<2U

And we can write the following recursion

2U+1

Bt i) = Z L+ 1,))aiyig)e+1
=

Finally we can deduce the local class posterior probabilities with the forward bckward product
a(t, B, j) = P, = L()H]X)

Summing over every possible classes at position t, we get the probability of the labelling

PUN = Y a(t DB

j=1,..20+1
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Training a LSTM with CTC

Training RNN with CTC, similar to NN-HMM using EM like Algorithm

Initialisation: - define one initial model RNN°
-seti=0 _
E Step (Expectation): Estimate the missing data (the missing labels) using the current model RNN*

P(rre = L(H|X) = a(t, j))B(L,))

M Step (Maximisation):
train RNN'*! using the local posteriors as the desired outputs
and using the cros-entropy criterion

while criterion improves goto i=i+1 step E

else RNN* = RNN! Stop

Typical outputs of LSTM trained with CTC and blank label Adding the blank label allows the network
Vv o u | o i n have no classification decision at some frames
| ‘
| ,1 ‘. Whereas it provides high probabilities of the
' characters at very few positions (1 or 2
consecutive frames)

|
II-"'IHIHI“I“I—I—I‘I’I"MHH"""H" Don’t know where the characters are exactly !!
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BLSTM Hierarchical architecture

Stacked BLSTM Layers feed the decision layer

Interest: similar to NN or Deep NN, make the RNN learn representations (features) and progressively
get more discriminative features in the upper layers.

Hierarchical architectures introduce a kind of subsampling operator but more elaborated than the
traditional subsampling operator which simply forgets a proportion of the information.

Allows having long range dependencies without having to cope with too large windows (and weights)

» Example with 3 hidden layers and a sub sampling factor of S=2

. Output Layer
{ » Each unit of one hidden layer has an observation window of size
. S=2 frames.
/)= o . .
R » The observation window of each layer moves with a stride

of S=2 frames along its input (no overlap between windows)

Higdden Layers

. :-/'.;-'/.:-
s al

- » -l » The size of the gates is impacted by doubling the size of
g / / L P the input vector at each time frame compared to non hierarchical
“ P, o1 _ architectures

input Layer
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BLSTM Hierarchical architecture

LSTM Neural Networks architecture
Stacked BLSTM Layers feed the decision layer

V 0 U I0|r|

pooling Layer

) (0.0

pooling Layer

o0
FFEELRLILPEERA R
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LSTM Hierarchical multidimentional architectures

BLSTM hierarchical multidimentional architecture (Graves 2008)

For practical application in image processing one wants to combine the strengths of multi-
dimensionnality (for 2D context) and hierarchichal architecture (larger history in the past 4§

context)
3 3 N
N\ q 4
Input image 6 feedforward 20 feedforward Decision Layer
of height 128 maps with tanh maps with tanh Softmax
4 X 2LSTM cells 4 X 10 LSTM cells 4 X 50 LSTM cells :
121 units
o 8 feature maps 40 feature maps 1D sequence of

o vectors of size 400
J/a
.
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V

CNN-RNN architectures

-- The learnt representations may capture long term depencies that may not generalize well

-- training a RNN does not parallelize well

++ CNN can account for local 2D features in a natural way
++ RNN are powerful models to learn sequential representations

Decision Layer

polling LSTM L ayers

+ pooling
<«
T Collapse Layers

CNN Layers
+

pooling

litis
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Neural Networks & Recurrent Neural Networks
Bibliography
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Applications

Modéles
Modeles statistique de langage

Modeles de Markov discrets et continus (HMM)

Chamas dlaaiaica Caonditionnals (CRE)

Modéles Neuro-Markoviens
Réseaux de neurones récurrents (RNN — BLSTM)

Applications
Parole et écriture

Mise en ceuvre
Extensions

Modeéles neuronaux a attention
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Applications to Speech and Handwriting Recognition

Isolated word recognition
Whatever the type of model (HMM or RNN) word recognition consists in searching the best hypothesis
belonging to a lexicon : Lexicon Driven Recognition

M* = argmax(P(0|M;))
l

v' Decoding with a « flat lexicon » is too expensive, use a prefix tree intead

Level Level Level Level Level TR Level
0 1 2 3 4 L1
A ouRt ‘e o U B RBT
ABERGMENT, Vgl é =
ABERTVILLE ~—» B — ;

ABILLY N -
ABIMES \ \ jry yf \
ABLIS \ V‘;—b I L L » E
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Applications to Speech and Handwriting Recognition

Isolated word recognition

Viterbi decoding constrained by the prefix tree P(O‘Mi) = P(0,0* ‘Mz) — Ha;{((aT (k))

Allows implementing different optimization technics for
- dealing with large lexicons (10K, 20K,....60K,...) in nearly real time
- integrate language models during the decoding phase : continuous speech recognition

State
H v 4
M*,Q" = argmax (P(0,Q;|M,)) 2996
L,j FoloXOROIOXO
g.ﬁf, ) (o) f W) (@
e T
oS ]
T r
(}litis 4 juillet 2018 Sequential Data Analysis (Th. P) 70
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Continuous Speech and Handwriting Recognition

The recognition process consists in searching the best word sequence W'=( w, w,

matching the observation O=( o,, o0,,... o,, .. 0; )

w, )
W* = argmax P(W |0) = argmax P(O|W) P(W)
w w

P(0|W) is the phonetic or optical model likelihood

P(W) is the language model likelihood.

Viterbi decoding using the only admissible character transitions encoded by the prefix tree
and the admissible transition by the language model.

Use of a state graph to encode the whole admissible sequence of characters 2O e D s ) e
with their respective probabilities '\ Word

* as many states as there are states in words in sentences...
+ transitions between words are the LM probabilities

Decoding is finding the best path in this graph, matching the observation sequence
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Continuous Speech and Handwriting Recognition
Finite-State Transducers in Language and Speech Processing, M. Mohri, 1997

Continuous speech recognition

WFST G : Word sequences follow the LM rules of the statistical . - -
language model (n-gram) - .

WFST L : Characters sequences follow some other syntactical rules
(lexicon) Finite State Transducer (FST)
Encoding regular expressions as well (alphanumeric expressions)

WFST T Left-Right Character HMM or CTC Automaton are
the lowest models giving the final state transition rules;

They can be encoded with a

T o min(det(L o G)) : provides the Transducer of the model -
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Continuous Speech and Handwriting Recognition

> optimisation problem

2. Decoding the treillis with the language model
\

Find the most probable path, matching the optical models accepted by the Language & Lexicon Automaton

Continuous speech recognition

EEEEEEEEXEEEEENENENENEER
EEEEEEEEN  EEEEENEEENEEN
EEEEEEEEEEYEEEEEEERE
EEEEEEEEEEAUEENEEERE
EEEEEEEEEEE.EENENEENE
EEEEEEEEEEEE ) EENEEENEN
EEEEEEEEEEEEANYEENEERE
EEEEEEEEEEEEEPEENENEN
EEEEEEEEEEEEEAENEEEENETN
EEEEEEEEEEEEER YEEEEEER
EEEEENEEEEEEEN  EEEEEE
EEEEEENEEEEEEENANEEEENR
EEEEEENEEEEEEEEYEEEER
EEEEEEEEEEEENEENENEERTR [ |
EEEEEENEEEEEEENENNEEER

EEEEEENEEEEEEEERUEEER

EEEEEENEEEEEEEEETERER m
EEEEEENEEEEEEEEELEEER
EEEEEENEEEEEEENEEENINEE
EEEEEENEEEEEEENEEEONER
EEEEEENEEEEEEENEEE.EEE
EEEEENEEENEEEEENEEAENTN
EEEEEEEEEEEEEEENEERYER
EEEEEEEEEEEEEEENENEANTN
EEEEEEEEEEEEEEENEEEREDR
EEEEEEEEEEEEEEEEEEREED

Latice of character hypothesis

1. Decoding with optical models

Camu Jrr'i.qnt' dam U: CL’\JALU\A Iml(u(tflm :1& mam (mhat J'avmuanu.
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Modéles
Modeles statistique de langage

Modeles de Markov discrets et continus (HMM)

Chamas dlaaiaica Caonditionnals (CRE)

Modéles Neuro-Markoviens
Réseaux de neurones récurrents (RNN — BLSTM)

Applications
Parole et écriture
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Extensions
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Towards End to End NN architectures

CNN-RNN are powerful models to learn sequential representations in signal and images

RNN are also competitive language models combined with n-gram
 Recurrent neural network based language model, T. Mikolov, et al. 2010.

RNN are also powerful language generators, and translators

 Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation, Cho
etal., EMNLP 2014

 Sequence to Sequence Learning with Neural Networks, Sutskever, et al. , NIPS 2014.

- Compute the best translation
- Probability of a translation

e; = f(e-1,%))

de = f(de_q,Veq,0)
4‘ {‘> 4;} ’ f v c

decoder

c is the n-dimentionnal context encoding the input sequence
encoder

1
Training loss : N—z log(p(Vu1X2))  with P, v, Veey o v,v5,¢) = g(dy, vy, )

1<ns<N
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Towards End to End NN architectures

Sequence to sequence with attention mechanism
Introduce a time dependant context ¢, during decoding
Select the most appropriate part of the input sentence to produce the curent output

Neural Machine Translation by jointly Learning to Align and Translate, D. Bahdanau et al., ICLR 2015.

d, = f(d_1,Vc-1,C,)

MLP
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Towards End to End NN architectures

Image to sequence with attention mechanism
For many computer vision tasks the system must recognize subparts of the image by putting attention at
some specific locations, recognize the object at this location and predict the next position of attention

[A
| bird
flying
over
~la
body
of
‘water
1. Input 2. Convolutional 3. RNN with attention 4. Word by

Image Feature Extraction over the image word
generationJ

e olelelal BT
PEERREERR

flying over water

14x14 Feature Map

S

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, K. Xu et al. , ICML 2015.
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Towards End to End NN architectures

Reading text with visual attention

An End to End reading system: extract features with a MDLSTM encoder, update the 2D attention map while
decoding characters with a LSTM that embeds a language model

MLP A A A
decoder
A A A

LSTM > N

-'}

. MDLSTM Encoder

Y o |

‘(

SCcan, att2e0n1d and read: End-to-end handwritten paragraph recognition with mdlstm attentionT Bluche, J Louradour, R Messina,
ICDAR, 7.

Joint line segmentation and transcription for end-to-end handwritten paragraph recognition
T Bluch, NIPS, 2016
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