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Sequential Data Analysis

Modèles
Modèles statistiques de langage
Modèles de Markov discrets et continus (HMM)
Champs Aléatoire Conditionnels (CRF)
Modèles Neuro-Markoviens
Réseaux de neurones récurrents (RNN – BLSTM)

Applications
Parole et écriture
Mise en œuvre

Extensions
Modèles neuronaux à attention
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Introduction
Static Representation / Sequence Representation of Data

A static representation is commonly an observation or a description of the data in a fixed size, 
n-dimensional, real valued, feature space.

Supervised classification : we seek to find an optimal discriminator between the categories, 
or classes, that are assigned to the data (labeled data), by exploiting this n-dimensional real valued 
representation, vector space.

Unsupervised classification: we seek to determine some structures in the data by 
examining this n-dimensional real valued representation (observation) only. 
Unlabeled data: no information about classes!

Possible solutions are:
Supervised classification : SVM, KNN, NN, DeepNN, Decision Trees, Random Forest, etc…
Unsupervised classification: GMM, K-means, fuzzy k-means, GAN etc…
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A sequence representation is an ordered representation of observations of variable length T.
The position in the sequence matters, it is denoted by the variable t

Discrete observation sequences
observations belong to a finite set of symbols

Character strings encoding a language (M = 100)
Word sequences (M = 10K…50K…)

! = ($%$&⋯$(⋯$) )

$( ∈ , = -%, -& ,⋯ , -/

Introduction
Static Representation / Sequence Representation of Data
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Ex: Language translation, Natural Language Processing (NLP), 
Textual Information Extraction (IE), 
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Continuous observation sequences
sequence of variable length
observations are made of N measurements
each measurement is a real valued sample

!" ∈ ℝ%

Example: 
Raw speech signal, n=1 measurement every 1/8000 sec (Fe=8 KHz)

Introduction
Static Representation / Sequence Representation of Data
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Short term spectrogram, cepstral coefficients : n=39 cepstral coefficients over a sliding
window of 256 samples (32 ms) 



4 juillet 2018

Introduction
Applications
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Pen Based Computing
Mobile Interfaces
PDA

Speech recognition

Gesture recognition in videos
sign language

3D gestures recognition
Kinect, games and animation
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Introduction
Static Representation / Sequence Representation of Data

0450430036

…and responsability. John Smith, chief financial officer of prime coorp since…..
I       I          Per  Per    Pos   Pos       Pos     I  I     I     I

2. Labeling the components of the sequence and obtain a     
sequence of labels (more general problem, many to many): 

Handwriting recognition from images

Information extraction from raw textual data

detection
and classification
with a variable size
representation

multiple decisions
along the sequence

We are interested to process the sequence representations  for two main purposes

1. Labeling the sequence as a whole entity : assign a label (many to one): 

classification 
with a variable size
representation
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General formulation of the sequence labeling problem (problem2)

Look for the best label sequence

that can be associated to the observation sequence

The sequence of labels W may not have the same length as O
D is the set of possible output labels, lexicon of possible words
d = 20K,40K, 60K…. in case of natural language

Introduction
Static Representation / Sequence Representation of Data

!" ∈ ℝ%& = (!)!*⋯!"⋯!, )
.∗ = (0)∗0*∗⋯01∗⋯02∗) 01 ∈ 3), 3* ,⋯ , 35 =D

.∗ = argmax
;

< . &

Example of speech signal

input observation           O

output label sequence W* the chief financial officer of prime coorp

Example of handwriting image
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Introduction
Static Representation / Sequence Representation of Data

General formulation of the labelling problem

is the data attachment model (acoustic model, image model ….) 

is the language model

We need to design two kinds of models

Language models : n-grams, RNN
Data attachement models: HMM, NN-HMM, RNN

Towards End to End models : RNN + RNN

!∗ = argmax
)

* ! + = argmax
)

* + ! * !
* + ∝argmax

)
* + ! * !

* + !

* !

Sequential Data Analysis (Th. P) 8



4 juillet 2018

We focus our attention on how to model sequences of words of a language
so as to design efficient models capable of estimating the probability of a 
certain sequence of words to occur

i.e. compute where

Language modelling is the art of determining the probability of a sequence of words (Joshua, 2001).
The Shannon game of guessing the next letter or next word in a text (Shannon 1951)

Statistical language models (LM)

! " W= (%&%'⋯%) ⋯%*)
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The model is sufficiently general to apply to any type of sequence, not only words
=> sequence of characters, gene sequence, etc…

The principal assumption for building a language model is to consider that words have 
some specific collocations. They do not occur independently one from the other
Examples

strong tea peine de mort
weapons of mass destruction carte de séjour
death penalty conseil des ministres
white house



4 juillet 2018

Problem: a very large number of histories, and subsequently a very large number of 
probabilities to estimate

Solution: regroup histories by equivalence classes colled n-gram denoted by ! ℎ#
such that the following approximation holds : $ %# ℎ# ≈ $ %# ! ℎ#
n-gram are sequences of n consecutive words ! ℎ# = %#()*+⋯%#(-%#(+%#

W= (%+%-⋯%# ⋯%/)
We assume that collocations of words occur within a certain context of the words, 
or history of the words denoted by ℎ#= %+%-⋯%#(+ for word %#
Then, the probobability of the sentence is the product of the word probabilities in their respective contexts

Statistical language models (LM)

$ 1 =∏#3+/ $ %# ℎ#
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The probabilities $ %# ℎ# ≈ $ %# %#()*+⋯%#(-%#(+ are the parameters of the LM

Assume d=#D=20K words and n=2 (bigrams) there is 20 000 X 19 999 = 400 106 parameters
and n=3 (trigrams) there is 20 0002 X 19 999 = 8 1012 parameters
and n=4 (four-grams) there is 20 0003 X 19 999 = 1.6 1017 parameters

n-gram models require a huge amount of parameters to be estimated, even for small dictionary size, and 
small history. Large datasets of text exemples are required to have correct estimates of these quantities
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Statistical Estimators of n-gram LM
Notations

N              amount of training words

!"#$%&" the n-gram    !"#$%&⋯!"#&!"
( !"#$%&" the number of occurrences of n-gram 

Statistical language models (LM)

We want to estimate the following quantities ) !" !"#$%&"#& from the observation of a 
training corpus of text.

The Maximum Likelihood estimator (MLE)

)*+, !" !"#$%&"#& = ( !"#$%&"

( !"#$%&"#&
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Assume the following training corpus
<s> JOHN READ MOBY DICK </s>

<s> OPEND READ BOOK LIBRARY </s>

<s> MARY READ A DIFFERENT BOOK </s>

<s> SHE READ A BOOK BY CHER </s>

The probability of the sentence "JOHN READ A BOOK" is the following, with n = 2.

Statistical language models (LM)

P < " > $%&' ()*+ * ,%%- < \s > = 1 $%&' < " > 1 ()*+ $%&' 1 * ()*+ 1 ,%%- * 1 < \" > ,%%-

= 2 (456789: )

2 (456 )
× 2 (789: =>?@ )

2 (789: )
× 2 (=>?@ ?)

2 (=>?@ )
× 2 (? A88B )

2 (? )
× 2 (A88B 4\56 )

2 (A88B )

= C

D
× C

C
× E

D
× C

E
× C

F
= C

FGCH
≈ 0,0208

Limitation : MLE estimates assign 0 probability to unseen events

We look for better estimators able to affect low probability to unseen events

=> Introduce smoothing in the estimation
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Statistical language models (LM)

A smooth estimator has two components : a discounting model and a redistribution model

The discounting model is used to deduct a small amount of the probabilities allocated to the 
word sequences that are present in the training set. 
Probability re-distribution is the process of affecting some values to unseen n-gram

Linear discounting
Linear discounting consists in taking a fraction of the probability of a n-gram, according to its
number of occurrences in the training set.

where r is the discounting factor (slightly less than one)

The total probability mass kept aside of the seen events on the training corpus is

!"# $% $%&'()
%&) = +

, $%&'()
% ×.

, $%&'()
%&) /0 , $%&'()

% > 0

0 34ℎ6.$/76

0 < . < 1

∑; <=>?@A
= !B"C $% $%&'()

%&) − ∑; <=>?@A
= !"# $% $%&'()

%&) =1-r
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Statistical language models (LM)

Absolute discounting
Absolute discounting consists in discounting a fixed value  to the number
of occurrences of n-grams in the training set.

D is the fixed discounting factor

!"# $% $%&'()
%&) =

+ $%&'()
% − -

+ $%&'()
%&) ./ + $%&'()

% > 0

0 23ℎ56$.75
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∑9 :;<=>?
; !@AB $% $%&'()%&) −∑9 :;<=>?

; !"# $% $%&'()%&) = :;<=>?
;<? :9 :;<=>?

;<? DE ×#
9 :;<=>?

;<?

$%&'()%&) : + $%&'()%&) > 0

The total probability mass kept aside of the seen events on the training corpus is

is the number of distinct word histories preceding word $%
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Statistical language models (LM)
Probability redistribution
Goal : Affect some non null probabilities to unseen events by redistributing the 
previously discounted probability mass to the events seen in the training corpus

The model can use any type of discounting estimators (Linear, absolute,….)

with

the back-off weights, computed so that probabilities sum to 1

!"#$%&'(( )* )*&+,-
*&- = /

0 )*&+,-
*&- !"#$%&'(( )* )*&+,1

*&- 23 4 )*&+,-
* = 0

!6*7$ )* )*&+,-
*&- 23 4 )*&+,-

* > 0

!6*7$ )* )*&+,-*&- =/
!96 )* )*&+,-*&-

:;
!<6 )* )*&+,-*&-

0 )*&+,-
*&-
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The back-off model of probability redistribution
Estimate the probability of an unseen n-gram by exploiting the probability of a lower
order n-gram. i.e. going back to (n-1) gram if seen, otherwise (n-2) gram if seen, 
otherwise (n-3) gram if seen etc…
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The perplexity is the average number of words that can follow the current word. It tells 
how much the LM hesitates in the prediction of the next word. 

!!"# $ =% means there are on average, k equally likely words after a word
The lower the perplexity the better the LM

!!"# $ =2'()(+)

Statistical language models (LM)

Language model evaluation
Assume the test dataset T of N sentences, M words

LM estimates the probability of each sentence W
We can derive the probability of T

The best LM is the one that assigns the highest probability to the test dataset

! -
! $ =∏/012 ! -/
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3"# $ =-1#4567! $

The cross entropy evaluates how different the language model is with the equiprobable
distribution. 

This is the average number of bits required to encode the M words of the dataset
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Statistical language models (LM) 

Available tools for statistical LM training and evaluation
SRI LM : https://www.sri.com/engage/products-solutions/sri-language-modeling-toolkit
MIT LM : http://projects.csail.mit.edu/cgi-bin/wiki/view/SLS/MITLMTutorial

You can train a LM with one of these toolkit and export the LM using a standard DARPA format
Most of the platform for speech processing and training are supporting these formats 

Sequential Data Analysis (Th. P) 17
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Data Attachment models
General solution to the labeling problem

is the data attachment model (acoustic model in case of speech, 
graphic model in case of handwriting) 

is the language model

!∗ = argmax
)

* ! + = argmax
)

* + ! * !
* + ∝argmax

)
* + ! * !

* + !

* !

We now concentrate on the possible data attachement models

ü Hidden Markov models : the historical first model applied to speech in the 80’s
ü Hybrid Neuro-Markov models 90’s
ü Pure Neuronal models thanks to the introduction of Recurrent Neural Networks (RNN)

Sequential Data Analysis (Th. P) 18
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Idea: the probability of a character in a text in highly conditioned by the 
preceding characters

The Markov hypothesis

Andrei M arkov
1856-1922

P(Q) = P(q1q2q3...qT )

P(q1q2q3...qT ) = P(qT q1q2...qT−1)P(q1q2q3...qT−1)

The law of conditional probabilities writes

The first order Markov assumption writes

Thus the probability of the whole sequence can be factorized as follows

P(qt q1q2...qt−1) = P(qt qt−1)

P(q1q2q3...qT ) = P(q1 ) P(qt qt−1)
t=2

T

∏

Notice : the first order Markov hypothesis highly reduces the computational complexity
but it is often too simple to model real, Language models use n-gram models of higher
order at least 2 or 3, but 10 or more are possible models. 
Order 1 => bi-grams order 2 => tri-grams     order n-1 => n-grams

Sequential Data Analysis (Th. P) 19
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It is a generative model that describes how the label sequence Q can generate the 
observation sequence O . The two sequences have a same length T
It is represented by an oriented temporal graph (local label are represented by circles, 
while local observations are not).
The arrows represent conditional probabilities

The Hidden Markov Model (HMM)

o1

q1

o2 oT−1 oT

q2 qT−1 qT

ot

qt

Model hypotheses
1- 1st ordre label dependencies over time

2- Conditional independence of observations )()...()(),( 2211 TT qopqopqopMQOP =

P(Q) = P(q1 ) P(qt
t=2

T

∏ qt−1)

The model factorizes as P(O,Q M ) = π q1
p(ot qt )p(qt qt−1)

t
∏

P ! "

P " !A

A B

B

A

B
CP # !"
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HMM Parameters

A HMM is stationary: conditional probabilities do not change over time

Hidden States or labels. 

Transition probabilities

Initial probabilities

For discrete observations

Emission probabilities
B = P(ot = vm sk )( ) =

P(v1 s1 )

.
P(v1 sN )

P(v2 s1 )

.
P(v2 sN )

...

...

...

P(vM s1 )

.
P(vM sN )

!

"

#
#
#
##

$

%

&
&
&
&&
(K ,M )

S = s1 , s2...sK{ }qt ∈ S

V = v1 , v2 ... vM{ }ot ∈V

Π = π k( ) = P(q1 = sk )( )K

A =

P(s1 s1 ) ... P(sK s1 )

. P(si s j ) .

P(s1 sK ) ... P(sK sK )

!

"

#
#
#
#
#

$

%

&
&
&
&
&

=

a11 ... a1K
. aij .

aK1 ... sKK

!

"

#
#
#
#

$

%

&
&
&
&
(K ,K )

π k
1≤k≤K
∑ =1

aik
1≤k≤K
∑ =1
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HMM Parameters

For continuous observations

Emission probabilities : one Gaussian Mixture Models (GMM) per state

K X M  N-dimensional Gaussians…

K = 26 character x 10 
M = 10…20 Gaussians per state
N =50

=> 2600 Gaussians (clusters)

Sequential Data Analysis (Th. P) 22
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We can represent the model by a an Oriented Graphical Model showing the 
stationary conditional dependencies over time (from t to t+1)

HMM as a dynamic model

π k = P Y = yk( ) k =1,...,K avec π k
k
∑ =1

qt ∈ S

S = s1 , s2, s3{ }
V = v1 ,v2{ }
ot ∈V

3s

1s 2s
12a

23a

P(v2 s2 )

22a
P(v1 s1 )

P(v2 s1 )

P(ot = v1 qt = s3)

21a

32a
13a

31a

11a

P(qt = s3 qt−1 = s3) = a33

P(v1 s2 )

example of a 3 states and 2 discrete observations model

P(ot = v2 qt = s3)
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Various HMM Topologies

Ergodic

Left Right

Bakis

Parallel

A =

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

!
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&
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Tasks related topologies
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Sequential models for seq to seq problems

v          o          t r          e
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…and responsability. John Smith, chief financial officer of prime coorp since…..
I            I                Per    Per    Pos   Pos         Pos   I     I         I          I

Ergodic model for text labeling (IE)
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P(O M )Forward : What is the likelihood of the observation sequence ?

Inference Algorithms with HMM

Inference : Look for a solution to a certain problem through a lattice of hypothesis

Viterbi : Which is the best sequence of hidden states ? Q∗ = argmax
Q

P(O,Q M )

o1 o2 ... ot−1 ot ot+1 ... oT... ...

... ...
... ...
... ...

... ...

0.068

0.168

0.39

0.21

0.008

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

s1
s2
.
sk
.
.
sK

Forward-Backward : What is the local state posterior at time t ? ' () = +, -,/
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We look for the optimal sequence Q that best « explains » the observation.

Among the KT possible state sequences, we look for the most probable one

Direct computation is intractable but can take benefit of the time lattice structure so as to factorize 
sub-paths when computing the cost of a path i.e. state sequence 

This product can be decomposed into elementary probabilities (always >0). 
This quantity is monotonically decreasing.

Viterbi inference (1967)

Q*= argmax
i=1,..,KT

P(O,Qi M )( )

P(O,Q M ) = π q1
p(ot qt )p(qt qt−1)

t
∏

The Dynamic Programming (DP) principle can apply (Richard Bellman 1950)
« The global optimum is composed of local optima »

Define the partial solution till t

The one time step optimum is

Complexity is reduced from KT to K2 X T

( ))...,...(max)( 321321
... 121

MiqqqqooooPi tt
qqq

t
t

==
-

d

δt (i) =maxj δt−1( j)aji( )bi (ot )

Andrew  Jam es V iterbi
1935-…

o1 o2 ... ot−1 ot ot+1 ... oT
y1

yk−1

yk

yk+1

yK

... ...

... ...
... ...
... ...

... ...

0.068

0.168

0.39

0.21

0.008

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
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The Viterbi algorithm (1967)

Best implementation when using log probabilities instead of probabilities, so as to 
avoid multiplications.

Initialisation

Recursion

Termination

Best path decoding (backtracking)
T

*q = argmax
k

δT (k)( )

1≤ k ≤ K

δt (k) =maxj δt−1( j)ajk( )bk (ot )

ψt (k) = argmax
j

δt−1( j)ajk( )

1≤ i ≤ K 2 ≤ t ≤ T

1≤ k ≤ K 2 ≤ t ≤ T

qt
∗ =ψt+1 qt+1

∗( ) t = T −1,T − 2,...,1

P*=max
k

δT (k)( )

δ1 (k) = π kbk (o1 )

ψ1 (k) = 0
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Illustration 

o1 o2 ... ot−1 ot ot+1 ... oT

The Viterbi Algorithm (1967)

δt (i) =maxj δt−1( j)aji( )bi (ot )

... ...

... ...
... ...
... ...

... ...

0.068

0.168

0.39

0.21
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.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The optimal path is unknown till the last column is reached

Then we can compute the last state of the best path

Then we can retrieve the previous states of the optimal path, if the optimal local paths have 
been stored in the variable 

P∗

( ))(max* jP Tj
d=

qt−1
∗ =ψt (i) = argmax

j
δt−1( j)aji( )

qT
∗ = argmax

j
δT ( j)( )

! t(i)

s1
s2
.
sk
.
.
sK
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The Forward Inference 

What is the likelyhood of the observation sequence?
… regardless the hidden states

Þ sum over every possible paths                                                 : KT possible paths!      
Þ factorize the comon sub-paths

P(O M )

P(O M ) = P(O,Qi M
1≤i,≤KT
∑ )

o1 o2 ... ot−1 ot ot+1 ... oT
y1

yk−1

yk

yk+1

yK

... ...

... ...
... ...
... ...

... ...
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.
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.

.

.

P(o1o2o3...ot ,qt = k M ) is the probabily of observing the beginning of the sequence until time t
and reaching state k (cell (t,k) of the lattice) 

It is the sum over every possible sub-paths reaching state k at time t

This is a « forward » probability
(forward till k,t )

... ...0.008
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at one time step, there are only N possible paths coming from t-1 

and we can write

Course 3 : Forward Inference

Thus the following recursion

and finaly complexity T x K2 instead of KT !!

αt (i) = αt−1(k)akibi (ot )
1≤k≤K
∑

P(O M ) = αT (k)
1≤k≤K
∑

P(o1o2...ot ,qt = i M ) = P(o1o2...ot−1,qt−1 = k M )akibi (ot )
1≤k≤K
∑

o1 o2 ... ot−1 ot ot+1 ... oT... ...
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The Forward Algorithm

Forward Algorithm

Initialisation

Recursion for t=2:T

Termination

αt (k) = αt−1( j)ajkbk (ot )
j=1

N

∑ k =1,...,K

α1 (k) = π k ×bk (o1 ) k =1,...,K

P(O M ) = αT (i)
i=1

N

∑
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The numerator writes :

then

The Forward-Backward Inference 
y1

yk−1

yk

yk+1

yK

o1 o2 ... ot−1 ot ot+1 ... oT... ...

... ...
... ...
... ...

... ...
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0.21
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.
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.

.

.

.

.

.

.

.

.

.

.

.

What is the a posteriori probability of state sk at time t ?

The local posterior knowing the global observation

we write denominator: 

! "# = %& ',)

*# + = ! "# = %& ',) =, "# = %&,' ), ') ! ' ) = -
./&/0

12(+)

! "# = %&,' ) =! 5.56⋯5#, "# = %& ) ×! 5#9.5#96⋯52 "# = %&,)
! "# = %&,' ) =1# + ×:# +

o1 o2 ... ot−1 ot ot+1 ... oT

with

The « backward » probability
of observing the end of the sequence till time t+1 

while beeing in state  K at time t.

... ...0.008

... ...

... ...
... ...
... ...

0.008

o1 o2 ... ot−1 ot ot+1 ... oT

...

0.008

0.39 0.39 0.39 0.39

0.39 0.39 0.39

s1
s2
.
sk
.

.
sK

:# + = ! 5#9.5#96⋯52 "# = %&,)

Sequential Data Analysis (Th. P) 33



4 juillet 2018

Course 3 : The Forward-Backward Inference

One time step backward, there are N possible paths and we write

Thus we can write a backward recursion :

βt (k) = akibi (ot+1)
1≤i≤K
∑ βt+1(i)

P(ot+1ot+2...oT qt = k,M ) = akibi (ot+1)P(ot+2ot+3...oT qt+1 = i,M )
1≤i≤K
∑

o1 o2 ... ot−1 ot ot+1 ... oT

... ...0.008

... ...

... ...
... ...
... ...

0.068

0.168

0.39

0.21

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

P(O M ) = β1 (k)
1≤k≤K
∑

P(O M ) = αt (k)βt (k)
1≤k≤K
∑

P(O M ) = αT (k)
1≤k≤K
∑

and the following formulas hold

s1
s2
.
sk
.
.
sK
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Course 3 : The Forward-Backward Inference

Finaly the a posteriori probability writes :  

but also : o1 o2 ... ot−1 ot ot+1 ... oT

... ...0.008

... ...

... ...
... ...
... ...

0.068

0.168

0.39

0.21

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

αt (k)βt (k)

s1
s2
.
sk
.
.
sK

'( ) = +(()).(())
∑01213+((4).((4)

'( ) = 5 6( = 78 9,; = <=(8)>=(8)
∑?@A@B <C(2)
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The best model gets the highest likelihood (Maximum Likelihood (ML) criterion)

with

Training a HMM

We have a set of N training sequences

We want to model it by a HMM 

Problem :  Computing the criterion requires the model to be known, and thus the statistics about the 
hidden states, or knowing the hidden states that are responsible for having generated each example. 

This knowledge is missing, we don’t know the sequence of labels (states) associated to each
observation sequence (similar to unsupervised classification, but considering temporal depencies).

Solution: Extend the unsupervised classification techniques to sequences (Clustering, EM algorithm) 

Introduce the unknown label sequence of each observation sequence

is the set of observation sequences : the incomplete data

is the set of label sequences : the unknown data

is the set of the complete dataZ = (O,Q)

O = O1≤l≤N{ }
Q = Q1≤l≤N{ }

O = O1≤l≤N{ }= o1
l o2

l ... oTl
l( )

1≤l≤N"
#
$

%
&
'

! "# $ = &
'()(*

+,(.)

$ = 0,2,Π

$∗ = argmax
:

;
#<=

>
! "# $

?#
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The EM Algorithm

Initialisation: - define one initial model        (random guess, or k-means) 
- set i = 0

E Step (Expectation): Estimate the missing data (the missing labels) using the current model

M Step (Maximisation):  compute a better model           by improving the likelihood criterion

If   LVi > LVi-1 then
, goto step E

else

End

Training a HMM

Note : If the missing labels were known the criterion would simplify to

!"

!#

$ %&' = )* +',!# = -.(*)1.(*)
∑34546 -78(9)

!#:;

!∗ = !#

i=i+1

LV @,! !# = ∑;A'AB∑CDEF $ +',G' = G ! $ +',G' = G !#

LV @,! = HEF $ +,G ! = HEF ∏;A'AB$ +', G' = G ! = ∑;A'AB DEF $ +',G' = G !#
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Training a discrete HMM

Finaly, with N training observation sequences

The general re-estimation formulas of discrete HMM are

aij
* =

ξt
l (i, j)

t=1

Tk −1

∑
l=1

N

∑

γ t
l (i)

t=1

Tl −1

∑
l=1

N

∑
=

αt
l (i)aijbj (ot+1

l )βt+1
l ( j)

t=1

Tk −1

∑
l=1

N

∑

αt
l (i)βt

l (i)
t=1

Tk −1

∑
l=1

N

∑

π i
* =

1
N

γ1
l (i)

l=1

N

∑

bj
*(ot = vk ) =

γ t
l ( j)

t=1,ot =vk

Tl

∑
l=1

N

∑

γ t
l ( j)

t=1

Tl

∑
l=1

N

∑
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Training a continuous HMM

Use EM algorithm with the following reestimation formulas during M step

with

The transition matrix A is estimated as in the discrete case
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Training a HMM

The ML criterion

Over-training: 
The model overfit the training dataset with the risk to degrade on the test dataset (unseen data)

Ovoid over-training using a validation dataset during training 
From the whole training W dataset build two subsets T & V:      W = T + V = Training + Validation

Training on T with Likelihood criterion = LT

Overtraining is detected when Error E on V starts increasing
Early Stopping criterion :  !"# > !"#%& or !"# > !"#%& for i= '( , … ,'(+N

Extension : Cross-validation
Repeat the experiment on multiple partitions of W : Ai + Vi then average the performances 
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Training a HMM

Initialization :
Performance of the model depend on the initial model chosen to start EM
- A and p do not influence much 
- Initial value for B is prominent

- initialize B through a clustering technique (GMM) with no care for temporal information
- eventually use Viterbi to train a first model

Model complexity :
Care about the number of free parameters to be estimated

- minimiser la complexité du modèle pour une meilleure estimation

solution 1: few states, small alphabet, few Gaussians in the mixture
solution 2: introduce structural zero probabilities

(left-right, Bakis….) 
solution 3: introduce tied states that share the same mixtures 
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Embedded Training

Sequential Data Analysis (Th. P) 42

Train sub-units models (characters, phones…) in a continuous, unsegmented stream of data
• Only give the ground truth at the word, line, or paragraph
• Gather the missing statistics (E-step) with the whole HMM (word, line, paragraph) 
• Update the parameters of the involved sub-units only M-step

v          o          t r          e
1 1 1 1 1

i=0
Intitialize Mi

While L increases do
begin

for each training example do
begin

build the HMM (concatenation of sub-units)
compute forward et backward variables
update L
update the statistics of the sub-units involved

end
estimate new model parameters Mi+1of every sub-units

end

åå
-

=

-

=

1

1

1

1
)(),(

kk T

t

k
t

T

t

k
t ietji gx

There is no proven result that convergence will reach optimal sub-units
Only convergence towards a better global model (EM convergence)
But works rather well for unsegmented data !!



4 juillet 2018

HMM toolkits ressources

HTK : Hidden Markov Model Toolkit for continuous speech recognition
http://htk.eng.cam.ac.uk/

The historical reference toolkit, initially developped by microsoft, transfered to Cambridge University,
not maintained anymore.

Include many functionalities for speech decoding, not only training HMM
Include HMM decoding using large lexicons and n-gram language models, and grammars

Have a look at the tutorial  !!

KALDI : a more recent toolkit designed at the Johns Hopkins, Baltimore (USA), by Daniel Povey 
and his team http://kaldi-asr.org/doc/

Similar to HTK but still supported and having new developments

Very large lexicons are supported during decoding, in addition to high order language models,
thanks to using weighted finite states transducers (WFST) allowing encoding lexicons and language
model by WFST of characters.

We will give more insights about continuous speech and handwriting recognition algorithms 
later in this course.
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NN are discriminative models, requires known labels

they estimate class posteriors (softmax activation on the last layer)P "# $

Hybrid Neuro-HMM

They have been introduced in the continuous HMM framework so as to replace the GMM.

P $ %# = '
()*)+

, -* .($, 1* , Σ* )

GMM are generative models trained to model each class, with unknown labels

they estimate the data likelihood
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Hidden states sk are the classes Ck to be discriminated by the NN

Introduce normalized likelihood scores at the output of the NN

We expect HMM working with high dimensionnal input features

Have better performance due to discriminative training of the data model

How to train the NN with unknown labels ?

P $ %# = P %# $ ×,($)
,(%# )

∝ P %# $
,(%# )
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Similar to HMM using EM Algorithm

Initialisation: - define one initial model        (                            random guess, or k-means) 
- set i = 0

E Step (Expectation): Estimate the missing data (the missing labels) using the current model

M Step (Maximisation):  compute a better model           by improving the likelihood criterion

update  !" , $" similarly to a HMM
train N& "'( using the local posteriors of the HMM as the desired outputs 

need to modify the last layer update training formula of the NN (by considering every labels) 

one should prefer in this case using the cross-entropy criteria

If   LVi > LVi-1 then goto step E

else Stop
End

Training a Neuro-HMM

)* = !*,Π*,&&*

)"

- ./0 = 12 30,)" = 45(2)85(2)
∑:;<;= 4>?(@)

)"'(

)∗,&&∗ = )", &&"

i=i+1

LV G, ) )"

H(…
J/(K)L/(K)
∑(M@MN JO?(P)

…HN

O= − ∑(R ,O )∈OTU"V ∑2 H2 WXY2
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HMM bibliography
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Recurrent Neural Networks (RNN)

Recurrent Neural Networks have the hability to recognize patterns in sequential context by the 
introduction of recurrent units, and layers of recurrent units. They perform similar tasks as HMM or 
Neuro-HMM.

a single cell unit j of a RNN

!

"

#$ = &'$ + !
)*+

, -./

&)$ 0) + !
)*+

, -

&()2, -./)$ 4)56+

4$5 = 7 8$

95* (0+5 0:5 … 0)5 … 0,-./5 ) the input vector of unit j

7 is the activation function of unit j at time t
4$5 is the output of unit j at time t

&)$ the weights of unit j + the recurrent weights
&'$ its bias

Computs a non-linear transformation of its inputs and its past outputs: need to memorise the past
output of the cell to compute the forward pass

4+56+
⋮

4, -56+

A reccurrent layer 
every cell is recurrent with itself and 
any other cell of the layer

! ! ! !

" " "

...
"

...
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Recurrent Neural Networks (RNN)

A RNN architecture is typically composed of 
- The input layer, fed by the observation vector xt at time t,
- The recurrent layer, fed by xt and by its previous output ot-1 

- The output layer (softmax),which provides the class a posteriori probabilities
- The network, that moves forward through time 

! ! ! !

" " "
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…
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The unfolded RNN through time 
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!

Course 4 : Recurrent Neural Networks (RNN) 
for sequence analysis

Training a RNN with Back propagation through time (BPTT)
We can look at the unfolded network through time

output layer is a layer, not a cell

hidden layer

input layer

! ! ! ! !

! ! ! !

"#… …"% … …"&

'#… …'% … …'&

Since weights are independent of time, we must sum the gradients over time, 
to get the weights update formula 

The output layer weights update formula is unchanged

()*+# ,% = −/′ 1)*+# ,% 2) ,% − ') ,%

34)
5 = 34)

5 − 6 ∑%8#,…& ()5 ,% "459# ,%

()5,% = ∑:8#,…,;<=> (:5+#,% 34:5+# +∑:8#,…,;< (:5,%+#34:5 /′ 1)5,%

the gradients of the error at the hidden layer at time t depends on the gradients of the error at the output 
layer but also on the gradients of the error at the next time step (t+1) thus the name error back propagation 
throught time BPTT.

!
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Bidirectional RNN
Standard RNN make a prediction at the output layer, by taking benefit from past observations, but 
there are many applications for which the future observations are known. For example every
applications for which real time decisions are not necessary. 
We would like to take benefit from the future observations to make a better decision

1- introduce the future context by looking multiple time steps ahead, but introduce more weights, but a 
fixed context

2- introduce a second Recurrent Layer in the opposite direction

The decision layer combines the two recurrent layers

! ! ! ! !

! ! ! ! !

! ! ! ! !

! ! ! ! !

! ! ! ! !

Training a Bidirectional RNN
1. Backward pass of the output layer
2. Backward pass of the forward layer
3. Backward pass of the backward layer
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Long Short-Term Memory

The gradient vanishing problem
Feed Forward Neural Networks achieve classification tasks with at most 2 Hidden Layers. 

However, attempts to train Neural Network architectures with more layers

have been confronted to gradient vanishing during the backward pass. 

The gradient is small and its value decreases through the layers, 

thus training the first layers is difficult. Deep Learning has been introduced (2007), to 

overcome this limitation (un-supervised pre-training one layer after the other, 

Fine tuning the whole Network at last, introducing ReLu units). 

Support training with very large datasets…

Recurrent Neural Networks, although introduced many years ago, have been confronted with the 

gradient vanishing problem from their conception, as they need to learn sequential data. The depth of 

the unfolded network is equal to the longer sequence to be analyzed. Thus the gradient vanishes

through time, and the network cannot learn long time dependencies, which was the expected strength

of such networks compared to HMM. 
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Output Gate

Long Short-Term Memory
Long Short-Term Memory cells (mémoire longue à court terme) 
have been introduced by Hochreiter & Schmidhuber (1997) so as to encompass the limitations of 
standard RNN
Ideas: introduce a memory mechanism (to prevent vanishing values) with update policy

S. H ochreiter and J. Schm idhuber. Long Short-Term M em ory. N eural C om putation , 9(8):1735-1780, 1997.

Input Gate

Cell

×

×

×

ℎ

#

Forget Gate
#

#

$%&( ()%(*% …(,% …(-%)

/

there are 3 recurrent control gates
with sigmoid activation functions

1 standard recurrent unit with
sigmoid or tanh

C memory cells (C=1)

there are M memory blocs

h is preferably a tanh activation

#

/

Output

ℎ
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Long Short-Term Memory
Long Short-Term Memory cells (mémoire longue à court terme) 
have been introduced by Hochreiter & Schmidhuber (1997) so as to encompass the limitations of 
standard RNN
Ideas: introduce a memory mechanism (to prevent vanishing values) with update policy

S. H ochreiter and J. Schm idhuber. Long Short-Term M em ory. N eural C om putation , 9(8):1735-1780, 1997.

Cell

!"#( %&"%'" …%)" …%*")

,

-."/&

0." =2
)#&

*
3)4 %)" + 2

.#&

6
3.4-."/&

-." = ,(0." )

Output

1
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Long Short-Term Memory
Long Short-Term Memory cells (mémoire longue à court terme) 
have been introduced by Hochreiter & Schmidhuber (1997) so as to encompass the limitations of 
standard RNN
Ideas: introduce a memory mechanism (to prevent vanishing values) with update policy

S. H ochreiter and J. Schm idhuber. Long Short-Term M em ory. N eural C om putation , 9(8):1735-1780, 1997.

Cell

Input Gate

!
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*-20-$1)

02$ = 7("2$)

1
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7

02$1)
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Long Short-Term Memory
Long Short-Term Memory cells (mémoire longue à court terme) 
have been introduced by Hochreiter & Schmidhuber (1997) so as to encompass the limitations of 
standard RNN
Ideas: introduce a memory mechanism (to prevent vanishing values) with update policy

S. H ochreiter and J. Schm idhuber. Long Short-Term M em ory. N eural C om putation , 9(8):1735-1780, 1997.
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Long Short-Term Memory
Long Short-Term Memory cells (mémoire longue à court terme) 
have been introduced by Hochreiter & Schmidhuber (1997) so as to encompass the limitations of 
standard RNN
Ideas: introduce a memory mechanism (to prevent vanishing values) with update policy

S. H ochreiter and J. Schm idhuber. Long Short-Term M em ory. N eural C om putation , 9(8):1735-1780, 1997.

Cell
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Sequential Data Analysis (Th. P) 56



4 juillet 2018

Output Gate

Long Short-Term Memory
Long Short-Term Memory cells (mémoire longue à court terme) 
have been introduced by Hochreiter & Schmidhuber (1997) so as to encompass the limitations of 
standard RNN
Ideas: introduce a memory mechanism (to prevent vanishing values) with update policy

S. H ochreiter and J. Schm idhuber. Long Short-Term M em ory. N eural C om putation , 9(8):1735-1780, 1997.
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Output Gate

Long Short-Term Memory

Long Short-Term Memory cells (mémoire longue à court terme) 
have been introduced by Hochreiter & Schmidhuber (1997) so as to encompass the limitations of 
standard RNN
Ideas: introduce a memory mechanism (to prevent from vanishing values) with update policy

S.	Hochreiter and	J.	Schm idhuber.	Long	Short-Term Memory.	Neural	Computation 	,	9(8):1735-1780,	1997.
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Training a LSTM with CTC

Training LSTM with Connectionist Temporal Classification
Training any RNN, like training any NN, requires having the ground truth at each time step to be 
known.  This cannot be considered as it is too tedious a task to label sequetial data at such a low level.

Generally one provides the ground truth at word, or sentence level (speech or handwriting)

Similarly to HMM or Neuro-HMM we could use the Forward-Backward EM Embedded Training 
algorithm
E.	Senior,	T.	Robinson,	Forward	Backward	retraining	of	recurrent	neural	networks,	Neural	Information	Processing	Systems,	1996.

Alex Graves introduced a variant of the Forward Backward Embedded Training algorithm, called the 
Connectionist Temporal Classification (CTC). 

• The HMM layer is reduced to an automaton where transitions between states have 0/1 
weight (no transition probabilities anymore). 

• Introduce an additional specific blank state acting like a non character state 

A ground truth sequence of characters is modified to include a blank label between characters. 

vouloir -v-o-u-l-o-i-r-

Sequential Data Analysis (Th. P) 59



4 juillet 2018

Training a LSTM with CTC
CTC automaton alignment
During training we force the RNN to align to the paths accepted by the automaton only
The network may recognize a character spanning multiple frames

- - v v- - - -o - - - u - - - - - - - - l l  - - - - o - - - i - - - - r - - - two accepted paths
- v vv v -oooo - - u u u u u - - l l l  l l - o o o- - i - r  r r r r r -

Notice that by the introduction of the blank label we are not able to locate the characters
anymore

- - - - - -v o u l o i - -r
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Training a LSTM with CTC

Training RNN with CTC

Assume the local class conditional posteriors are independant, thus the probability of a path is the 
product of the local class posterior probabilities

! " # = %
&'(

)

*+,,&

- - v v- - - -o - - - u - - - - - - - - l l  - - - - o - - - i - - - - r - - - one accepted path "

*+,,& the probability of the class on " at position t

we denote by . the labelling sequence : . = -v-o-u-l-o-i-r-

Then the probability of the network to produce the labelling whatever the path "
is the sum over every possible paths accepted by the CTC automaton

with ℱ0((.) the set of accepted paths matching the sequence .! . # = 3
+4ℱ 56(7)

! " #
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Training a LSTM with CTC

Training RNN with CTC
We can represent the CTC automaton with a binary transition matrix A	encoding the possible paths along
the labeling from one character (or state) to the next in the labelling.

with

- - - - - -v o u l o i - -r

A= $%& % ,&() ,… ,+,-)
$%& = .1 01 23$4502064 $77689:

0 62ℎ938059

Then, the forward probability of a partial labelling l(1:j) ending at position j		with state l(j) knowing the 
observation X		until position t writes

F 2, G = H 7(1: G) I)…IJ

F(2, G) = KL(&),J M
%()

+,-)

F(2 − 1, 0)$%&

F(1, 7(1)) = KL()),)
F(1, 7(2)) = KL(+),)
F(1, 7(0)) = 0 ∀ 0 > 2

With the initial conditions                             

And we can write the following recursion
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Similarly we can write the backward probability

And we can write the following recursion

Training a LSTM with CTC

Training RNN with CTC

! ", $ = & '($: 2+ + 1) /012…/4

!(", $) = 5
672

8912
! " + 1, : ;<6=> 6 ,012

!(?, 2+ + 1) = 1

!(1, '($)) = 0 ∀ $ < 2+

Initial conditions

!(?, 2+) = 1

Finally we can deduce the local class posterior probabilities with the forward bckward product

Summing over every possible classes at position t, we get the probability of the labelling

C ", : ! ", : = & D0 = '(:) E

& ' E = 5
672,…,8912

C ", : ! ", :
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Training RNN with CTC,  similar to NN-HMM using EM like Algorithm

Initialisation: - define one initial model                                 
- set i = 0

E Step (Expectation): Estimate the missing data (the missing labels) using the current model

M Step (Maximisation):
train !"" #$% using the local posteriors as the desired outputs 
and using the cros-entropy criterion

while criterion improves goto i=i+1 step E
else Stop

Training a LSTM with CTC

!""&

!""#

!""∗ = !""#

) *+ = ,(.) 0 = 1 2, . 4 2, .

Typical outputs of LSTM trained with CTC and blank label

v      o   u             l    o    i    r
Adding the blank label allows the network 
have no classification decision at some frames

Whereas it provides high probabilities of the 
characters at very few positions (1 or 2 
consecutive frames)

Don’t know where the characters are exactly !!
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BLSTM Hierarchical architecture
Stacked BLSTM Layers feed the decision layer

Interest: similar to NN or Deep NN, make the RNN learn representations (features) and progressively
get more discriminative features in the upper layers. 

Hierarchical architectures introduce a kind of subsampling operator but more elaborated than the 
traditional subsampling operator which simply forgets a proportion of the information.

Allows having long range dependencies without having to cope with too large windows (and weights)

• Example with 3 hidden layers and a sub sampling factor of S=2

• Each unit of one hidden layer has an observation window of size 
S=2 frames.

• The observation window of each layer moves with a stride
of S=2 frames along its input (no overlap between windows)

• The size of the gates is impacted by doubling the size of 
the input vector at each time frame compared to non hierarchical
architectures
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BLSTM Hierarchical architecture

LSTM Neural Networks architecture 
Stacked BLSTM Layers feed the decision layer

v      o   u            l    o    i    r
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BLSTM hierarchical multidimentional architecture (Graves 2008)
For practical application in image processing one wants to combine the strengths of multi-
dimensionnality (for 2D context) and hierarchichal architecture (larger history in the past
context)

LSTM Hierarchical multidimentional architectures 

3
4

3
4

4 X 2 LSTM  cells

8 feature m aps

6 feedforw ard

m aps w ith tanh
4 X  10 LSTM  cells

40 feature m aps

2
4

20 feedforw ard

m aps w ith tanh
4 X  50 LSTM  cells

1D  sequence of 
vectors of s ize 400

D ecis ion Layer

Softm ax
121 units

Input im age

of height 128
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CNN-RNN architectures

-- The learnt representations may capture long term depencies that may not generalize well
-- training a RNN does not parallelize well
++ CNN can account for local 2D features in a natural way
++ RNN are powerful models to learn sequential representations
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Applications

Modèles
Modèles statistique de langage
Modèles de Markov discrets et continus (HMM)
Champs Aléatoire Conditionnels (CRF)
Modèles Neuro-Markoviens
Réseaux de neurones récurrents (RNN – BLSTM)

Applications
Parole et écriture
Mise en œuvre

Extensions
Modèles neuronaux à attention
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Applications to Speech and Handwriting Recognition

Isolated word recognition
Whatever the type of model (HMM or RNN) word recognition consists in searching the best hypothesis
belonging to a lexicon : Lexicon Driven Recognition

ü Decoding with a « flat lexicon » is too expensive, use a prefix tree intead
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Isolated word recognition

Viterbi decoding constrained by the prefix tree

Allows implementing different optimization technics for 
- dealing with large lexicons (10K, 20K,….60K,…) in nearly real time
- integrate language models during the decoding phase : continuous speech recognition

P(O Mi ) ≅ P(O,Q* Mi ) =max1≤k≤K
δT k( )( )

Applications to Speech and Handwriting Recognition
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Continuous Speech and Handwriting Recognition

The recognition process consists in searching the best word sequence
matching the observation O = ( o1 , o2,... ot , ... oT )

W ∗ = ( w1 w2 ... wm )

W ∗ = argmax
W

P(W O) = argmax
W

P(OW )P(W )

is the phonetic or optical model  likelihoodP(OW )

is the language model likelihood. P(W )
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Viterbi decoding using the only admissible character transitions encoded by the prefix tree
and the admissible transition by the language model.
Use of a state graph to encode the whole admissible sequence of characters
with their respective probabilities

• as many states as there are states in words in sentences…
• transitions between words are the LM probabilities

Decoding is finding the best path in this graph, matching the observation sequence
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1M 2M 3M
WFST T Left-Right Character HMM or CTC Automaton are 
the lowest models giving the final state transition rules; 
They can be encoded with a

WFST G : Word sequences follow the LM rules of the  statistical
language model (n-gram)

WFST L : Characters sequences follow some other syntactical rules
(lexicon) Finite State Transducer (FST)

Encoding regular expressions as well (alphanumeric expressions)

T o min(det(L o G)) : provides the Transducer of the model
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Continuous Speech and Handwriting Recognition

Continuous speech recognition

Finite-State Transducers in Language and Speech Processing, M. Mohri, 1997
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Find the most probable path, matching the optical models accepted by the Language & Lexicon Automaton
=> optimisation problem

1. Decoding with optical models

2. Decoding the treillis with the language model

Latice of character hypothesis
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Continuous Speech and Handwriting Recognition

Continuous speech recognition
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Modèles à attention

Modèles
Modèles statistique de langage
Modèles de Markov discrets et continus (HMM)
Champs Aléatoire Conditionnels (CRF)
Modèles Neuro-Markoviens
Réseaux de neurones récurrents (RNN – BLSTM)

Applications
Parole et écriture
Mise en œuvre

Extensions
Modèles neuronaux à attention
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Towards End to End NN architectures
CNN-RNN are powerful models to learn sequential representations in signal and images

RNN are also competitive language models combined with n-gram 
• Recurrent neural network based language model,T. Mikolov, et al. 2010.

RNN are also powerful language generators, and translators 
• Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation, Cho 

et al., EMNLP 2014
• Sequence to Sequence Learning with Neural Networks, Sutskever, et al. , NIPS 2014.
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Towards End to End NN architectures
Sequence to sequence with attention mechanism
Introduce a time dependant context !" during decoding
Select the most appropriate part of the input sentence to produce the curent output

Neural Machine Translation by jointly Learning to Align and Translate, D. Bahdanau et al., ICLR 2015.
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Towards End to End NN architectures
Image to sequence with attention mechanism
For many computer vision tasks the system must recognize subparts of the image by putting attention at 
some specific locations, recognize the object at this location and predict the next position of attention
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Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, K. Xu et al. , ICML 2015.
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Towards End to End NN architectures

Reading text with visual attention

An End to End reading system: extract features with a MDLSTM encoder, update the 2D attention map while
decoding characters with a LSTM that embeds a language model
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Scan, attend and read: End-to-end handwritten paragraph recognition with mdlstm attentionT Bluche, J Louradour, R Messina, 
ICDAR, 2017.
Joint line segmentation and transcription for end-to-end handwritten paragraph recognition
T Bluch, NIPS, 2016


