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Operations Research at a glance

What is Operations Research?

”OR deals with the development of advanced analytical methods to
solve decision or optimization problems“,

OR ∼ Combinatorial Optimization ∼ Discrete Optimization ∼ Continuous

Optimization ∼ Mathematical Programming ∼ Constraint Programming ∼
...

Main stream: make use of mathematics and computer science to
build appropriate models and algorithms.

V. T’Kindt ( Université de Tours LIFAT(EA 6300), équipe ROOT (ERL CNRS 7002) tkindt@univ-tours.fr )May 17, 2019 2 / 50



Operations Research at a glance

What is Operations Research?

”OR deals with the development of advanced analytical methods to
solve decision or optimization problems“,

OR ∼ Combinatorial Optimization ∼ Discrete Optimization ∼ Continuous

Optimization ∼ Mathematical Programming ∼ Constraint Programming ∼
...

Main stream: make use of mathematics and computer science to
build appropriate models and algorithms.
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Operations Research at a glance

Starting from an example

0/1 KNAPSACK
Input: A finite set U, a size s(u) ∈ N and value v(u) ∈ N for each u ∈ U. A
maximum size B ∈ N.
Goal: Find a subset U ′ ⊆ U such that∑

u∈U′ s(u) ≤ B and
∑

u∈U′ v(u) is maximum.
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Operations Research at a glance

Starting from an example

Maximize
∑

u∈U′ v(u)
subject to∑

u∈U′ s(u) ≤ B
U ′ ⊆ U

Minimize f (x)
subject to

x ∈ S

How to solve this kind of problem?
Exact/optimal algorithms ⇒ optimal solutions.

Heuristic algorithms ⇒ “good” solutions.

Pt1: What is its complexity?

Pt2: What is a good model?

Pt3: Which solution algorithm?
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Notions of Complexity Theory (Pt1)

What is Complexity Theory?

Complexity theory provides tools to qualify the time complexity to
make a computer solving a problem ([1]),

0/1 KNAPSACK: An instance I is a tuple (U, s, v ,B),

The size n of I is the number of elements, i.e. n = |U|,
What is the smallest time complexity (in the worst case) a computer
can achieve to solve the 0/1 KNAPSACK?

[1] Garey, S.M., Johnson, D.S. (1978). Computers and Intractability, W.H. Freeman and

Company.
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Notions of Complexity Theory (Pt1)

Complexity classes

The complexity Zoo
(complexityzoo.uwaterloo.ca/Complexity_Zoo),

Class P: contains problems solvable in polynomial time of the
instance size n (easy problems),

Class NPC: contains problems not solvable in polynomial time of the
instance size n (hard problems),

P vs NP? Assumption: P 6= NP,
One of the millennium problems of the Clay Mathematics Institute ($1 million reward)

V. T’Kindt ( Université de Tours LIFAT(EA 6300), équipe ROOT (ERL CNRS 7002) tkindt@univ-tours.fr )May 17, 2019 6 / 50

complexityzoo.uwaterloo.ca/Complexity_Zoo


Notions of Complexity Theory (Pt1)

Complexity classes

The complexity Zoo
(complexityzoo.uwaterloo.ca/Complexity_Zoo),

Class P: contains problems solvable in polynomial time of the
instance size n (easy problems),

Class NPC: contains problems not solvable in polynomial time of the
instance size n (hard problems),

P vs NP? Assumption: P 6= NP,
One of the millennium problems of the Clay Mathematics Institute ($1 million reward)
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Notions of Complexity Theory (Pt1)

Consequences

What can we do under the previous hypothesis?

For problems shown to be in P: find an optimal algorithm running in
polynomial time of n,

For problems shown to be in NPC (NP-hard problems):

1 Option 1: Find an optimal algorithm with the “lowest possible” time
complexity (though exponential in n)... or at least, fast enough in
practice.

2 Option 2: Find a heuristic algorithm running in polynomial time (so, no
guarantee to have the optimal solution).
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Modelling considerations (Pt2)

A scheduling problem

Getting a model leading to an effective solution is fundamental!

Consider the following scheduling problem,

Single machine total tardiness (SMTT)

Let be n tasks to perform on a single processor. Each task j is defined by
a known processing time pj and a due date dj .
For a given schedule s, each task j is given a completion time Cj and a
tardiness Tj = max(0;Cj − dj).
Find a schedule s with minimum

∑
j Tj value.

V. T’Kindt ( Université de Tours LIFAT(EA 6300), équipe ROOT (ERL CNRS 7002) tkindt@univ-tours.fr )May 17, 2019 8 / 50



Modelling considerations (Pt2)

A scheduling problem

Getting a model leading to an effective solution is fundamental!
Consider the following scheduling problem,

Single machine total tardiness (SMTT)

Let be n tasks to perform on a single processor. Each task j is defined by
a known processing time pj and a due date dj .
For a given schedule s, each task j is given a completion time Cj and a
tardiness Tj = max(0;Cj − dj).
Find a schedule s with minimum

∑
j Tj value.
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Modelling considerations (Pt2)

A scheduling problem

This problem is NP-hard in the ordinary sense,

Mathematical Programming (MP) to model the problem,

A position based IP formulation (IP1),

Minimize
∑n

k=1 T[k]

s.t.∑
k=1 xj ,k = 1 ∀j = 1, ..., n∑
j=1 xj ,k = 1 ∀k = 1, ..., n

T[k] ≥
∑k

`=1

∑n
j=1 xj ,`pj −

∑n
j=1 xj ,kdj ∀k = 1, ..., n

T[k] ≥ 0 ∀k = 1, ..., n
xj ,k ∈ {0; 1} ∀j , k

For a given instance, provide (IP1) to a commercial solver (e.g.
CPLEX, Gurobi, XPress) and press the Solve button!

You should be able to solve instances up to about 50 jobs in size.
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Modelling considerations (Pt2)

A scheduling problem

Model the problem differently by making use of Lawler’s
decomposition [2],

Illustration on an example,

Dynamic Programming (DP):

T [S , 0] = mins≤`≤e(T [B`, 0] + T [A`,
∑

j∈B`∪{j∗} pj ] + max(0;
∑

j∈B`∪{j∗} pj − dj∗ ))

with j∗ the longest task in S , B` (resp. A`) tasks before j∗ (resp. after) when sequenced

in position `.

You should be able to solve instances up to 100 tasks in size.

[2] Lawler, E.L (1977). A pseudopolynomial algorithm for sequencing jobs to minimize total

tardiness, Annals of Discrete Mathematics, 1:331-342.

V. T’Kindt ( Université de Tours LIFAT(EA 6300), équipe ROOT (ERL CNRS 7002) tkindt@univ-tours.fr )May 17, 2019 10 / 50



Modelling considerations (Pt2)

A scheduling problem

Model the problem differently by making use of Lawler’s
decomposition [2],
Illustration on an example,

Dynamic Programming (DP):

T [S , 0] = mins≤`≤e(T [B`, 0] + T [A`,
∑

j∈B`∪{j∗} pj ] + max(0;
∑

j∈B`∪{j∗} pj − dj∗ ))

with j∗ the longest task in S , B` (resp. A`) tasks before j∗ (resp. after) when sequenced

in position `.

You should be able to solve instances up to 100 tasks in size.

[2] Lawler, E.L (1977). A pseudopolynomial algorithm for sequencing jobs to minimize total

tardiness, Annals of Discrete Mathematics, 1:331-342.
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Modelling considerations (Pt2)

Intermediate conclusions

Pit stop

MP and DP are approaches usable for building models,

MP and DP can be used also to solve your problem,

The effectiveness of MP solvers is continuously improved: good
challengers for the exact solution of decision/optimization problems.
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Modelling considerations (Pt2)

The GED problem

Another example: The Graph Edit Distance problem (GED),

The GED problem

Let G = (V ,E , µ, ξ) and G ′ = (V ′,E ′, µ′, ξ′) be two undirected attributed
graphs, with µ (resp. µ′) is the set of labels attached to vertices in V
(resp. V ′), and ξ (resp. ξ′) is the set of labels attached to edges in E
(resp E ′).
Let λ be and edit path: a minimal set of operations (deletion, insertion,
substitution) to transform G into G ′.
Find λ∗ with minimal cost d(λ) =

∑
o∈λ c(o).
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Modelling considerations (Pt2)

The GED problem

The GED problem is NP-hard,

Consider a first IP formulation of the problem (IP1) [3],

Variables:

xi,k =

{
1 if i ∈ V is matched with k ∈ V ′

0 otherwise

yij,k` =

{
1 if (i , j) ∈ E is matched with (k, `) ∈ E ′

0 otherwise

|V | × |V ′| variables xi,k and |E | × |E ′| variables yij,k`.

[3] Lerouge, J. Abu-Aisheh, Z., Raveaux, R., Ramel, J.-Y., Héroux, P., Adam, S. (2017). New

binary linear programming formulation to compute the graph edit distance, Pattern Recognition,

72:254-265.
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Modelling considerations (Pt2)

The GED problem

Consider a first IP formulation of the problem (IP1) [3],

Constraints:∑
k∈V ′ xi,k ≤ 1 ∀i ∈ V (A)∑
i∈V xi,k ≤ 1 ∀k ∈ V ′ (B)∑
(k,`)∈E ′ yij,k` ≤ xi,k + xj,k ∀k ∈ V ′,∀(i , j) ∈ E (C)

Ex: yij,k` ≤ xi,k + xj,k and yij,k` ≤ xi,` + xj,`

[3] Lerouge, J. Abu-Aisheh, Z., Raveaux, R., Ramel, J.-Y., Héroux, P., Adam, S. (2017). New

binary linear programming formulation to compute the graph edit distance, Pattern Recognition,

72:254-265.
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Modelling considerations (Pt2)

The GED problem

Consider a first IP formulation of the problem (IP1) [3],

Objective function:
Minimize∑

i∈V

∑
k∈V ′ Cv (i , k)xi,k +

∑
(i,j)∈E

∑
(k),`∈E ′ Ce(ij , k`)yij,k` + CSTE

[3] Lerouge, J. Abu-Aisheh, Z., Raveaux, R., Ramel, J.-Y., Héroux, P., Adam, S. (2017). New

binary linear programming formulation to compute the graph edit distance, Pattern Recognition,

72:254-265.
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Modelling considerations (Pt2)

The GED problem

Consider a second IP formulation of the problem (IP2) [4],

Variables:
Same xi,k variables.

yij,k` =

{
1 if (i , j) ∈ E is matched with (k, `) ∈ Ẽ ′

0 otherwise

with Ẽ ′ = E ′ ∪ {(`, k)/(k, `) ∈ E ′}
|E | × |E ′| variables xi,k and 2× |V | × |V ′| variables yij,k`.

[4] Darwiche, M. (2018). When Operations Research meets Structural Pattern Recognition: on

the solution of Error-Tolerant Graph Matching Problems, Ph.D. Thesis, University of Tours

(France).
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The GED problem
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Constraints (A) and (B)
We change constraints (C)

∑
(i,j)∈E
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|V |+ |V ′|+ |V | × |V ′| constraints.

[4] Darwiche, M. (2018). When Operations Research meets Structural Pattern Recognition: on

the solution of Error-Tolerant Graph Matching Problems, Ph.D. Thesis, University of Tours

(France).
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Modelling considerations (Pt2)

The GED problem

(IP2) has more variables but less constraints than (IP1),

What’s the impact on a computational side?

Tests done on 660 instances from CMUHOUSE database [4] (30
vertices per graph),

model (IP1) model (IP2)
tavg (s) #Opt tavg (s) #Opt
395.33 25 20.26 25

model (IP1) model (IP2)
tavg (s) #Opt davg (%) tavg (s) #Opt davg (%)
880.74 25 604.11 497.07 365 0.70

[4] Darwiche, M. (2018). When Operations Research meets Structural Pattern Recognition: on

the solution of Error-Tolerant Graph Matching Problems, Ph.D. Thesis, University of Tours

(France).
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Modelling considerations (Pt2)

Final conclusions

Conclusion

Thinking about the model is as less as important as thinking about
solution algorithms.
Designing models occur when dealing with a problem... but also when
designing optimization algorithms.
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Solution algorithms (Pt3)

Introduction

Depending on the complexity of the problem: Exact or Heuristic
algorithms,

The toolbox of OR (non exhaustive),

Exact algorithms Heuristic algorithms
Family Name Family Name
Branching algorithms Branch-and-Bound Constructive algorithms Priority based

Branch-and-cut Greedy
Branch-and-price Ant CO

Branch-and-cut-and-price Branching algorithms Beam Search
Mathematical Programming LP Recovering BS

MILP Branch-and-Greed
QP Limited Discrepancy Search

SDP Neighborhood based algorithms Simulated Annealing
Dynamic Programming Forward DP Tabu

Backward DP Multistart
DP across the subsets VNS

Constraint Programming GRASP
Dedicated Approaches Genetic Algorithms

Bees Algorithms
Matheuristics VPLS

Local Branching

V. T’Kindt ( Université de Tours LIFAT(EA 6300), équipe ROOT (ERL CNRS 7002) tkindt@univ-tours.fr )May 17, 2019 21 / 50



Solution algorithms (Pt3)

Introduction

Depending on the complexity of the problem: Exact or Heuristic
algorithms,

The toolbox of OR (non exhaustive),

Exact algorithms Heuristic algorithms
Family Name Family Name
Branching algorithms Branch-and-Bound Constructive algorithms Priority based

Branch-and-cut Greedy
Branch-and-price Ant CO

Branch-and-cut-and-price Branching algorithms Beam Search
Mathematical Programming LP Recovering BS

MILP Branch-and-Greed
QP Limited Discrepancy Search

SDP Neighborhood based algorithms Simulated Annealing
Dynamic Programming Forward DP Tabu

Backward DP Multistart
DP across the subsets VNS

Constraint Programming GRASP
Dedicated Approaches Genetic Algorithms

Bees Algorithms
Matheuristics VPLS

Local Branching
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Solution algorithms (Pt3)

What’s next?

Golden rules

1 Never design an exponential-time exact or heuristic algorithm for a
problem in class P,

2 If your problem is in class P, find the right polynomial-time exact
algorithm (dedicated),

3 If your problem is in class NPC, don’t search for a polynomial-time
exact algorithm: optimality ⇒ exponentiality. Do heuristics?

We will see some of the most interesting approaches (to my opinion),
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Solution algorithms (Pt3)

Exact algorithms for NP-hard problems

Commercial solvers (CPLEX, Gurobi, XPress) of MILP are now very
competitive,

First design a good MILP model of your problem,

Solve it thanks to a commercial solver,

Try to design a more effective exact algorithm,
NB: “more effective” means capable of solving to optimality instances of largest size.
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V. T’Kindt ( Université de Tours LIFAT(EA 6300), équipe ROOT (ERL CNRS 7002) tkindt@univ-tours.fr )May 17, 2019 23 / 50



Solution algorithms (Pt3)

Exact solution of the SMTT problem

Based on Lawler’s decomposition, we have designed an exact
branching algorithm [5],

[5] Shang, L., T’kindt, V., Della Croce, F. (2018). The Memorization Paradigm: Branch and

Memorize algorithms for the efficient solution of sequencing problems.

https://hal.archives-ouvertes.fr/hal-01599835.
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https://hal.archives-ouvertes.fr/hal-01599835.
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Solution algorithms (Pt3)

Exact solution of the SMTT problem

In Branch-and-Bound algorithms, we also add a bounding mechanism:

1 First, compute a global upper bound UB,
2 At each node s, compute a lower bound LB(s) to the best solution

that can be built from s,
3 If (LB(s) > UB) then prune node s.

For the SMTT problem, the bouding mechanism was useless due to
the presence of a memorization mechanism,

In Branch-and-X algorithms, we can also add cuts:

If (C1(r) > d[r+1]) then there is no optimal solution in which task 1 is scheduled in
position r ,

with C1(r) the completion time of task 1 in the EDD schedule when task 1 is moved to

position r .
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Solution algorithms (Pt3)

Exact solution of the SMTT problem

For the SMTT problem, a bunch of cuts is used (all forbid positions),

Computational experiments show that we solve instances with up to
500 tasks,
MIP: 50 tasks / DP: 100 tasks

We improve these results by adding a memorization mechanism:
remember the exploration you have done so far, to avoid exploring
useless subproblems in the future.
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Solution algorithms (Pt3)

Exact solution of the SMTT problem

The memorization mechanism,
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Solution algorithms (Pt3)

Exact solution of the SMTT problem

Management of the database is a crucial point,

Computational experiments show that we solve instances with up to
1200 tasks,
MIP: 50 tasks / DP: 100 tasks / B&B: 500 tasks

Pit stop

We have seen so far different exact approaches for NP-hard optimization
problems:

Mathematical Programming (MILP),

Dynamic Programming (DP),

Branch-and-X algorithms.
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Solution algorithms (Pt3)

From exact to heuristic approaches

Finding exact algorithms is a very challenging issue,

For NP-hard problems, we are faced with combinatorics ⇒ CPU
times may become quickly non acceptable,

Heuristic approaches may become the only option,

A heuristic algorithm = polynomial running time but no warranty of
computing the optimal solution,

The challenge: (i) find heuristics as close as possible to the optimal
solution, (ii) acceptable running time.
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Solution algorithms (Pt3)

Heuristic solution of the GED problem

Many heuristics have been designed for that problem (see e.g. [4]),

Two efficient ones:

IPFP ([6]): neighborhood based algorithm which improves an initial
solution by a local search phase in continuous space (QAP),
GNCCP ([6]): neighborhood based algorithm intensively using IPFP on
reformulations of the QAP.

Other heuristics exist (some based on branching approaches) but are
less efficient than IPFP or GNCCP ([4, 6, 7]),

[4] Darwiche, M. (2018). When Operations Research meets Structural Pattern Recognition: on

the solution of Error-Tolerant Graph Matching Problems, Ph.D. Thesis, University of Tours

(France).

[6] Bougleux, S., Brun, L., Carletti, V., Foggia, P., Gauzere, B., Vento, M. (2017). Graph edit

distance as a quadratic assignment problem, Pattern Recognition Letters, 87:38-46.

[7] Brun, L. (2017). Graph edit distance: Basics and History, Workshop on Graph-based

Representations in Pattern Recognition (GbR 17), Capri (Italy).
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Solution algorithms (Pt3)

Heuristic solution of the GED problem

What’s the problem with the previous heuristics?

QAP may not be a good choice (there are linearities to exploit in the
problem): we have good MILP formulations,

Using continuous relaxations to explore a discrete set of solutions is
not always a good idea,

Mathematical Programming strongly exploits the powerfulness of
branching algorithms and polyhedral properties,

We will see a neighborhood based heuristic based on Mathematical
Programming: Matheuristics.

V. T’Kindt ( Université de Tours LIFAT(EA 6300), équipe ROOT (ERL CNRS 7002) tkindt@univ-tours.fr )May 17, 2019 31 / 50



Solution algorithms (Pt3)

Heuristic solution of the GED problem

What’s the problem with the previous heuristics?

QAP may not be a good choice (there are linearities to exploit in the
problem): we have good MILP formulations,

Using continuous relaxations to explore a discrete set of solutions is
not always a good idea,

Mathematical Programming strongly exploits the powerfulness of
branching algorithms and polyhedral properties,

We will see a neighborhood based heuristic based on Mathematical
Programming: Matheuristics.
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Solution algorithms (Pt3)

A Matheuristic for the GED problem

We design a Local Branching heuristic (LocBra, [8,9])

We make use of (IP2) formulation,

xi ,k =

{
1 if i ∈ V is matched with k ∈ V ′

0 otherwise

yij ,k` =

{
1 if (i , j) ∈ E is matched with (k , `) ∈ Ẽ ′

0 otherwise

We only work on the xi ,k variables,

[8] Darwiche, M., Conte, D., Raveaux, R., T’kindt, V. (2019). A local branching heuristic for

solving a graph edit distance problem, Computers & Operations Research, 106:225-235.

[9] Darwiche, M., Conte, D., Raveaux, R., T’kindt, V. (2019). Graph Edit Distance: Accuracy

of Local Branching from an application point of view, Pattern Recognition Letters, in press.
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Solution algorithms (Pt3)

A Matheuristic for the GED problem

We start with an initial solution x0 (e.g. solve (IP2) for t = 180s),

We try to improve this solution by a local search phase,

Neighborhood definition N (x , x`),
N (x , x`) = {x/∆(x , x`) ≤ π},
with ∆(x , x`) =

∑
(i,k)∈S`(1− xi,k) +

∑
(i,k) 6∈S` xi,k ,

and S` = {xu,v ∈ x`/xu,v = 1}.
Let us denote by (IP2)Iπ(x`) the model (IP2) with the constraint
x ∈ N (x , x`) added,
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Let us denote by (IP2)Iπ(x`) the model (IP2) with the constraint
x ∈ N (x , x`) added,
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Solution algorithms (Pt3)

A Matheuristic for the GED problem

Global functionning of the LocBra Matheuristic,
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Solution algorithms (Pt3)

A Matheuristic for the GED problem

Diversification,

Identify the variables xi ,k which modification from the current
solution x` implies a high modification of the objective function,

Compute costs ci ,k : cost of matching vertices i ∈ V and k ∈ V ′,
Compute costs θi ,k : cost of matching edges from i with edges from k
(assignment problem),
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Solution algorithms (Pt3)

A Matheuristic for the GED problem

Diversification,

Let Sdiv be the set of variables xi ,k with high σi values,

To get a new solution from x` solve (IP2)Dβ (x`):

Model (IP2),
Add constraint:
∆′(x , x`) =

(∑
(i,k)∈S`∩Sdiv

(1− xi,k) +
∑

(i,k)∈Sdiv\S`∩Sdiv
xi,k
)
≥ β
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Solution algorithms (Pt3)

Computational experiments

How good is LocBra with respect to the state-of-the-art heuristics
IPFP and GNCCP?

Several databases have been considered ([4]): MUTA, HOUSE-REF,
PROTEIN,

Results on PROTEIN database,
Size IPFP GNCCP LocBra

Avg Dev (%) Avg time (s) Avg Dev (%) Avg time (s) Avg Dev (%) Avg time (s)
20x20 1.05 0.09 0.22 2.05 0.06 6.54
30x30 0.98 0.27 0.20 7.21 0.08 8.68
40x40 1.14 0.59 1.68 23.17 0.39 8.82

For graphs of size 20x20 and 30x30, we have the optimal solution. For

40x40 we have 63% of optimal solutions.

A comparison with ground-truth on CMUHOUSE-NA shows that
LocBra strongly outperforms the other heuristics (at most 5% of
wrong matchings against more than 20% for the others).
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Solution algorithms (Pt3)

Conclusions for the matheuristic

Cons

A lot of parameters to tune: (π, β, total cpu time, ub cpu time, ...),

Some parts (e.g. diversification) are efficient because problem
dependent,

Need for a quite efficient MIP formulation.

Pros

The total CPU time allocated to the method can be tuned to fit
user’s requirements,

Very efficient and quite simple to use (black-box solver for the MIP),

Can be parallelized.
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Solution algorithms (Pt3)

Conclusions

Does Operations Research will save the world?

No, but it can help to solve optimization/decision problems,

Important issues:

Modelling issues: having a good model to solve is fundamental,
Structural analysis: deriving mathematical properties is important to
improve the solution,
Algorithmic issues: choose the right way (exact vs heuristic) and the
appropriate algorithm.
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OR vs Machine Learning

Beyond OR

Some personal thoughts,

Let us consider the Traveling Salesman Problem (TSP),
Input: A connected graph G = (V ,E ) with V the set of vertices (cities) and
E the set of edges (routes). Each edge (i , j) ∈ E is defined by a weight di,j
(distance). We note n = |V |.
Goal: Find a permutation S of vertices such that(∑n

k=1 dS[k],S[k+1] + dS[n],S[1]

)
is minimum.
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OR vs Machine Learning

The TSP

What is the state-of-the-art in OR?

The problem is strongly NP-hard,

Well solved to optimality by the Concorde solver ([10]) ⇒ instances
up to 86 000 cities,

Based on a Branch-and-Cut algorithm exploiting mathematical
programming,

[10] Appelgate, D.L, Bixby, R.E., Chvatal, V. Cook, W.J. (2007). The Traveling Salesman

Problem: A Computational Study, Princeton Press.
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OR vs Machine Learning

The TSP

A lot of heuristics exist: one of the most efficient one is LKH
([11,12,13]),

A local search heuristic using 2k-opt as an operator to build a new
solution: for any k ≥ 1 value, k edges of the current solution are
removed and k edges are added,

Initial solution: random,

Often finds optimal solutions, at most at 0.162% of the optimal
solution (TSPlib),

Time complexity in O(n2.2): instance with 13509 cities ≈ 12h.

[11] Helsgaun, K. (2000). An Effective Implementation of the Lin-Kernighan Traveling Salesman

Heuristic, European Journal of Operational Research, 126(1):106-130.

[12] Helsgaun, K. (2009). General k-opt submoves for the Lin-Kernighan TSP heuristic,

Mathematical Programming Computation, 1(2-3):119-163.

[13] Tinos, R., Helsgaun, K., Whitley, D. (2018). Efficient Recombination in the

Lin-Kernighan-Helsgaun Traveling Salesman Heuristic, PPSN XV, pp. 95-107.
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OR vs Machine Learning

The TSP

A well solved problem today,

It has started to be studied in ML,

Why?

To get a very fast heuristic finding near-optimal solutions (the Holy
Grail),

Let us consider the Pointer Network approach in [14],

Learn how to produce good solutions directly from the TSP instance,

[14] Vinyals, O., Fortunato, M., Jaitly, N. (2015) Pointer Networks, in C. Cortes and N. D.

Lawrence and D. D. Lee and M. Sugiyama and R. Garnett (Eds): Advances in Neural

Information Processing Systems, 28:2692-2700.
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OR vs Machine Learning

The TSP

Training:

for instances with less than 20 cities, solve the problem to optimality
(Held-Karp algorithm),
for instances with 20-50 cities, use Christofides heuristic,

Architecture: Pointer Network (RNN with an attention mechanism),

Predictor: Input=list of cities, Output=permutation,

So, in fact, the trained Pointer Network mimics existing (but not the
most efficient ones) heuristics,

Result: it is worse than the Christofides heuristic,

Complexity of the predictor: O(n2)... almost the same than LKH
heuristic.

V. T’Kindt ( Université de Tours LIFAT(EA 6300), équipe ROOT (ERL CNRS 7002) tkindt@univ-tours.fr )May 17, 2019 44 / 50



OR vs Machine Learning

The TSP

Training:

for instances with less than 20 cities, solve the problem to optimality
(Held-Karp algorithm),

for instances with 20-50 cities, use Christofides heuristic,

Architecture: Pointer Network (RNN with an attention mechanism),

Predictor: Input=list of cities, Output=permutation,

So, in fact, the trained Pointer Network mimics existing (but not the
most efficient ones) heuristics,

Result: it is worse than the Christofides heuristic,

Complexity of the predictor: O(n2)... almost the same than LKH
heuristic.
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OR vs Machine Learning

The TSP

The same “problem” holds for other ML approaches,

How can we expect to outperform existing heuristics when we learn
from... these heuristics?

Having only optimal solutions in the training databases is difficult,
so...

Is ML convicted to fail when applied to optimization problems?

The right question should be more why using ML,
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OR vs Machine Learning

OR and ML

Two important reasons ([15]):

To build an heuristic that is fast... and possibly mimics slow effective
OR heuristics,
When a real-life optimization problem cannot be mathematically
formalized in an acceptable way,

In the remainder, consider only ”well-defined” optimization problems,

My believe (also expressed somehow in [15]):

ML and OR should no longer be used separately to solve optimization
problems.

[15] Bengio, Y., Lodi, A., Prouvost, A. (2019) Machine Learning for Combinatorial Optimization:

a Methodological Tour d’Horizon, Research report, arXiv, arxiv.org/abs/1811.06128v1.
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OR vs Machine Learning

OR and ML

ML: elaborates on data / OR: elaborates on the constraints and
objectives,

OR algorithms strongly exploit the structure of problems... but they
are sometimes conceived on “pifométrique” rules,

The future? Embed ML into OR algorithms to remove these rules!

Let us go back to the LocBra heuristic for the GED problem,

The neighborhood definition used to do intensification is:

∆(x , x`) ≤ π.
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V. T’Kindt ( Université de Tours LIFAT(EA 6300), équipe ROOT (ERL CNRS 7002) tkindt@univ-tours.fr )May 17, 2019 47 / 50



OR vs Machine Learning

OR and ML

ML: elaborates on data / OR: elaborates on the constraints and
objectives,

OR algorithms strongly exploit the structure of problems... but they
are sometimes conceived on “pifométrique” rules,

The future? Embed ML into OR algorithms to remove these rules!

Let us go back to the LocBra heuristic for the GED problem,

The neighborhood definition used to do intensification is:

∆(x , x`) ≤ π.
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OR vs Machine Learning

OR and ML

The neighborhood definition used to do intensification is:

∆(x , x`) ≤ π.

We let the MIP solver exploring the neighborhood ⇒ time consuming,

The “pifométrique rule”: As I don’t know the interesting parts of the
neighborhood, I pay for intensive computations,

Why not learning, for a given current solution x`, what is the most
promising part of the neighborhood (subset of variables to consider)?

This would make faster the intensification phase ⇒ enable to consider
larger neighborhoods ⇒ improve the overall LocBra heuristic.
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V. T’Kindt ( Université de Tours LIFAT(EA 6300), équipe ROOT (ERL CNRS 7002) tkindt@univ-tours.fr )May 17, 2019 48 / 50



OR vs Machine Learning

OR and ML

The neighborhood definition used to do intensification is:

∆(x , x`) ≤ π.

We let the MIP solver exploring the neighborhood ⇒ time consuming,

The “pifométrique rule”: As I don’t know the interesting parts of the
neighborhood, I pay for intensive computations,

Why not learning, for a given current solution x`, what is the most
promising part of the neighborhood (subset of variables to consider)?

This would make faster the intensification phase ⇒ enable to consider
larger neighborhoods ⇒ improve the overall LocBra heuristic.
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OR vs Machine Learning

OR and ML

And there are a very long list of possible integrations of ML into OR
algorithms,

Let us go back to the SMTT problem,

We proposed to memorize an exponential number of solutions into a
finite size database,

Currently, the policy to update the database is: remove all solutions
that were never used to prune other nodes,

Room for ML to learn if a solution will be dominant or not.
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OR vs Machine Learning

OR and ML

Decades of exciting research activities to come!

... and possibly, OR+ML may save the world.

Thank you for your attention.
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