

CHEMOINFORMATICS:

Pharmacophore graph

Nhat-Vinh Vo[‡] Bertrand Cuissart[‡] Ronan Bureau[†]

‡ GREYC – FR CNRS UMR 6072 † CERMN – UPRES EA 4258 – FR CNRS 3038 INC3M first name.last name@unicaen.fr

April 20, 2018

AGAC Analyse de Graphe Appliquée à la Chémoinformatique Financial support from the Normandy region

• Data environment for chemoinformatics

- Protein-Ligand interactions
- ChEMBL
- Pharmacophore graph
 - Notations
 - Norns
- Graph edit distance
 - Similarity between two graphs
 - Mining the graph edit path

Data environment for chemoinformatics

Data environment for chemoinformatics

 "ChEMBL or ChEMBLdb is a manually curated chemical database of bioactive molecules with drug-like properties" (Wikipedia) (https://www.ebi.ac.uk/chembl/)

Component Description

Tyrosine-protein kinase ABL1

Consequence : a lot of experimental measurements available Example: ABL on 12 Apr 2018

Target Associated Bioactivities

Target Name and Classification

Target Components

Target Relations

ChEMBL ID

CHEMBL2096618

CHEMBL2111414

Approved Drugs and Clinical Candidates

-	
Target ID	CHEMBL1862
Target Type	SINGLE PROTEIN
Preferred Name	Tyrosine-protein kinase ABL
Synonyms	ABL ABL1 Abelson murine leukemia viral oncogene homolog 1 Abelson tyrosine-protein kinase 1 JTK7 Proto- oncogene c-Abl Tyrosine-protein kinase ABL1 p150
Organism	Homo sapiens
Species Group	No
Protein Target Classification	enzyme > kinase > protein kinase > tk protein kinase group > tyrosine protein kinase abl family

Relationship

SINGLE PROTEIN

ChEMBL Statistics

- DB: ChEMBL_23
- Targets: 11,538
- Compound records: 2,101,843
- Distinct compounds: 1,735,442
- Activities: 14,675,320
- Publications: 67,722

N-V. VO (GREYC)

AGAC			Anril	20 2018
CHEMBL1421	DASATINIB	Tyrosine-protein kinase ABL inhibitor	4	DailyMed
CHEMBL288441	BOSUTINIB	Tyrosine-protein kinase ABL inhibitor	4	Expert
ChEMBL ID	Name	Mechanism of Action	Max Phase	References

Pref Name

Bcr/Abl fusion protein

Tyrosine-protein kinase ABL

Accession

Target Type

CHIMERIC PROTEIN

Data environment for chemoinformatics

ChEMBL Bioactivity Search Results: 1409 Please select ¥ 10 records per page Show / hide columns Standard Standard Standard pChEMBL Assay Assay Src Assay Target Target Ingredient Molweight Туре Relation Value Units Value Туре Description Description Organism Туре Target Name Organism Reference 270.24 1050 10000 014 B In vitro inhibition of the v-abl Scientific SINGLE Tyrosine-protein Homo J. Med. Chem., (1995) PROTEIN tyrosine kinase activity in A431 Literature sapiens 38:13:2441 membranes using angiotensin II as phosphate acceptor as substrate CHEMBL44 316.35 IC50 10000 пM В Inhibition of Abl1 (unknown Scientific Homo SINGLE Tyrosine-protein Homo J. Med. Chem. (2014) origin) assessed as incorporation Literature PROTEIN kinase ABL 57:11:4598 sapiens of [32P] gamma-ATP in to myelin basic protein after 30 mins by autoradiographic analysis CHEMBL67 853.91 IC50 10000 nM в Inhibition of Abl1 (unknown Scientific SINGLE J. Med. Chem. (2014) Homo Homo Chiral origin) assessed as incorporation Literature sapiens PROTEIN kinase ABL sapiens 57:11:4598 of [32P] gamma-ATP in to myelin basic protein after 30 mins by autoradiographic analysis CHEMBL428647

• Data environment for chemoinformatics

Reduced pharmacophore graph

- Notations
- Norns
- Graph edit distance

Pharmacophore graph

An abstracted representation of a molecule

Pharmacophore Graph includes the following features

- Hydrogen Bond Acceptor, Hydrogen Bond Donor, aromatic Ring, Hydrophobic area, Positively ionizable group, Negatively ionizable group^a
- an adjustable part of the input.

^aOpenBabel, N. M. O'Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch,

G. R. Hutchison, J. Cheminformatics 2011, 3, 33.

Pharmacophore graph

Norns

En.

- a GUI to express workflows in chemoinformatics,
- 60 configurable boxes that include:
 - the reading/writing of molecules from/into files,
 - molecular representations,
 - pharcophoric features mining,
 - pharmacophore manipulations,
 - and classifiers
- implementation of complex processes by connecting boxes,
- result analysis through dynamic interactive web pages.
- Available at :

https://chemoinfo.greyc.fr/2017_metivier/MiniNorns.tgz

The Pharmacophore Network: a Computational Method for Exploring Structure-Acti Jean-Philippe Métivier, Bertrand Cuissart, Ronan Bureau, Alban Lepailleur (J Med Chem. 2018 Apr 12. doi: 10.1021/acs.jmedchem.7b01890)

Pharmacophore graph

Norns

Molecule 1412

CMPD_CHEMBLID	CHEMBL1991782
RELATION	>
STANDARD_TYPE	Kİ
STANDARD_UNITS	nM
STANDARD_VALUE	50118.72

N-V. VO (GREYC)

- Data environment for chemoinformatics
- Pharmacophore graph
- Graph edit distance
 - Similarity between two graphs
 - Mining the graph edit path

Graph edit distance

Graph edit distance

• measures distances between two graphs g_1 and g_2 by the amount of distortion that is needed to transform g_1 into g_2 .^a

 $^a Graph$ Edit Distance, K. Riesen, Structural Pattern Recognition with Graph Edit Distance 2015, p29-45.

Definition 2.1 (*Edit Path*) A set $\{e_1, \ldots, e_k\}$ of k edit operations e_i that transform g_1 completely into g_2 is called a (*complete*) *edit path* $\lambda(g_1, g_2)$ between g_1 and g_2 . A *partial edit path*, i.e., a subset of $\{e_1, \ldots, e_k\}$, edits proper subsets of nodes and/or edges of the underlying graphs.

Definition 2.2 (*Graph Edit Distance*) Let $g_1 = (V_1, E_1, \mu_1, \nu_1)$ be the source and $g_2 = (V_2, E_2, \mu_2, \nu_2)$ the target graph. The graph edit distance $d_{\lambda_{\min}}(g_1, g_2)$, or $d_{\lambda_{\min}}$ for short, between g_1 and g_2 is defined by

$$d_{\lambda_{\min}}(g_1, g_2) = \min_{\lambda \in \mathcal{T}(g_1, g_2)} \sum_{e_i \in \lambda} c(e_i), \qquad (2.1)$$

N-V. VO (GREYC)

Graph edit distance

Mining the graph edit path

- each graph edit path corresponding to the edition's performance
- group of graph edit paths leading to the same tendency of edition
 - \rightarrow Is there any operation leading to the significant performance?
 - \rightarrow Is there any series of operations leading to the significant performance?

Mining the graph edit path in chemoinformatics

- \rightarrow Is there any operation on a ligand leading to the better affinity?
- \longrightarrow Is there any series of operations on a ligand leading to the better affinity?

Summary

• Data environment for chemoinformatics

- Protein-Ligand interactions
- ChEMBL
- Pharmacophore graph
 - Notations
 - Norns
- Graph edit distance
 - Similarity between two graphs
 - Mining the graph edit path