

Optimisation problems encountered during our study of pharmacophores

Nhat-Vinh Vo[‡] Bertrand Cuissart[‡] Ronan Bureau[†] Alban Lepailleur[†]

‡ GREYC – FR CNRS UMR 6072 † CERMN – UPRES EA 4258 – FR CNRS 3038 INC3M first name.last name@unicaen.fr

May 23, 2019

AGAC Analyse de Graphes Appliquée à la Chémoinformatique Financial support from the Normandy region

- Context, Objective and Principle
- Optimisation problems
 - Compute Graph Edit Distance
 - Build selected training set
- Conclusion and Perspective.

Context

Context, Objective and Principle Optimisation problems Conclusion and Perspective

Terminologies:

- Ligand: an organic molecule that binds with a biomolecule
- Target: a part of the organism to which a ligand binds, producing a change of behaviour. Proteins is a common class of targets.

Figure : Ligand-Target Model.

Context

Terminologies:

• Pharmacophore: a part of a molecular structure that is responsible for a particular biological or pharmacological interaction that it undergoes.

Pharmacophore Graph includes the following features

- Hydrogen Bond Acceptor, Hydrogen Bond Donor, aromatic Ring, Hydrophobic area, Positively ionizable group, Negatively ionizable group^a
- an adjustable part of the input.

^aOpenBabel, N. M. O'Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch, G. R. Hutchison, J. Cheminformatics 2011, 3, 33.

Objective

Input:

- Learning set of ligands whose structures and biological profiles are known
- Ligand L whose structure is known but not its profile

• Output:

• Prediction of the biological profile of *L*.

- Compute similarity between studied ligands
- Elaborate a mechanism for a supervised classification
- Apply the supervised classification to the candidate ligand of which the bioactivity has not been known yet.

Principle

Optimisation problems

- Compute Graph Edit Distance
- Build selected training set

Compute Graph Edit Distance

Graph edit distance

• measures distances between two graphs g_1 and g_2 by the amount of distortion that is needed to transform g_1 into g_2 .^a

 $^a Graph$ Edit Distance, K. Riesen, Structural Pattern Recognition with Graph Edit Distance 2015, p29-45.

Definition 2.1 (*Edit Path*) A set $\{e_1, \ldots, e_k\}$ of k edit operations e_i that transform g_1 completely into g_2 is called a (*complete*) *edit path* $\lambda(g_1, g_2)$ between g_1 and g_2 . A *partial edit path*, i.e., a subset of $\{e_1, \ldots, e_k\}$, edits proper subsets of nodes and/or edges of the underlying graphs.

Definition 2.2 (*Graph Edit Distance*) Let $g_1 = (V_1, E_1, \mu_1, \nu_1)$ be the source and $g_2 = (V_2, E_2, \mu_2, \nu_2)$ the target graph. The graph edit distance $d_{\lambda_{\min}}(g_1, g_2)$, or $d_{\lambda_{\min}}$ for short, between g_1 and g_2 is defined by

$$d_{\lambda_{\min}}(g_1, g_2) = \min_{\lambda \in \Upsilon(g_1, g_2)} \sum_{e_i \in \lambda} c(e_i), \qquad (2.1)$$

N-V. VO (GREYC)

- Compute Graph Edit Distance using a Branch-and-Bound procedure [Abu-Aisheh et al., 2017]¹
- Graph Edit Distance vs. Optimisation problems:
 - Graph matching problem
 - Load balancing problem
 - Branch-and-Bound technique: branching scheme, upper bound.

¹Abu-Aisheh, Raveaux, Ramel, Martineau - 2017 - "Parallel Graph Edit Distance" - Expert Systems with Application, p41:57.

- Compute similarity between ligands using Graph Edit Distance (GED)
- Apply GED to 1492 ligands (from 8 to 13 vertices) from a ligand set for ABL-target

 \longrightarrow It exists instances without any optimality within 10 computation minutes.

Example: H-H-H-4-3-3 vs. A-H-H-H-4-3-3-4-7-8

- → Assumption: good cost configuration
- \rightarrow 3 Node substitutions and 1 Node insertion: $3! \times 4 = 24$ possibilities
 - 1 Node substitution: $H \rightarrow A$
 - 1 Node insertion: H
 - 3 Edge insertions: A-H (3); H-H (7); H-H (8)
 - 3 Edge substitutions: H-H (4) \rightarrow A-H (4); H-H (3) \rightarrow H-H (4); H-H (3) \rightarrow A-H (3).

Compute Graph Edit Distance

- Apply Norns (by projet Minomics) to the dataset to extract a space of pharmacophores which satisfy the following constraints [Métivier et al., 2018]²:
 - Size of graph: from 1 to 6 vertices
 - Support/Frequency: at least 10
 - Growth Rate: used to classify pharmacophores
 - With and without MMRFS algorithm
 - \rightarrow Without MMRFS (S₁): 87175 pharmacophores
 - \rightarrow With MMRFS (S₂): 137 pharmacophores
- Edit Cost Configuration:
 - Node Deletion/Insertion: 6
 - Node Substitution: 10
 - Edge Deletion/Insertion: 0
 - Edge Substitution: difference(edge1,edge2)
 - \rightarrow Computation time for GED: **0.5 second**

²Métivier, Cuissart, Bureau, Lepailleur - 2018 - "The Pharmacophore Network: A Computational Method for Exploring Structure-Activity Relationships from a Large Chemical Data Set" - Journal of Medicinal Chemistry, Vol.61, p3551:3564.

- Compute Graph Edit Distance
- Build selected training set

Build selected training set

Context, Objective and Principle Optimisation problems Conclusion and Perspective

Objective: build selected training set including:

- Selection of pharmacophores
- Pharmacophores best relating to pharmacophores selected by experts.

N-V. VO (GREYC)

Compute generalised-median pharmacophores \overline{P} to determine pharmacophores best relating to pharmacophores selected by experts:

- $\bullet\,$ Space of all pharmacophores $\mathbb G$
- Selection of pharmacophores Sel
- Set of pharmacophores selected by experts $S = \{P_1, P_2, \dots, P_{|S|}\}$

$$\overline{P} = ARGMIN_{P \in \mathbb{G} \setminus Sel} \sum_{P_i \in S} GED(P, P_i)$$
(1)

 \longrightarrow How to deal with this problem?

- Use GED as similarity between ligands and between pharmacophores
- Apply a Branch-and-Bound procedure to GED computation

 → Is there any better way (computation time) for an exact solution?
- Compute generalised-median pharmacophores to build selected training set
 - \rightarrow How to deal with large search space?