
Graph Neural Networks : an introduction

Benoit Gaüzère,
in close collaboration with Sébastien Adam, Pierre Héroux,
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The Deep Learning Era

The NN rise
Since 2012, we observe the rise of NN based methods :

I Huge datasets

I High computationnal capacities (GPU, . . . )

I Representation learning ≥ handcrafted features

Successes
I Image/Object recognition

I Speech recognition

I Natural Language Processing

I Game theory (Go)

I . . .
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Deep learning on images : CNN
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Deep learning on images : CNN

[Wikipedia]
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Graph space

What is a graph ?

I G = (V,E), E ∈ V × V
I Labels :

I lv : V → IRfv

I le : E → IRfe

I degree : d(vi) = |N (vi)| ∈ IN+

I order : |V |, size : |E|.

Graph representation (in ML)

I Adjacency matrix A ∈ {0, 1}n×n, with n = |V |.
I A(i, j) = 1 iff. (vi, vj) ∈ E

I Feature Matrix X ∈ IRn×fv , X(i, :) ⇒ features of node vi.

I Laplacian : D −A, with D(i, i) = d(vi), else 0.
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Graph space
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Use of Structure- Activity Data To Compare Structure-Based Clustering Methods and
Descriptors for Use in Compound Selection

Robert D. Brown*,† and Yvonne C. Martin‡
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An evaluation of a variety of structure-based clustering methods for use in compound selection is presented.
The use of MACCS, Unity and Daylight 2D descriptors; Unity 3D rigid and flexible descriptors and two
in-house 3D descriptors based on potential pharmacophore points, are considered. The use of Ward’s and
group-average hierarchical agglomerative, Guénoche hierarchical divisive, and Jarvis- Patrick nonhierarchical
clustering methods are compared. The results suggest that 2D descriptors and hierarchical clustering methods
are best at separating biologically active molecules from inactives, a prerequisite for a good compound
selection method. In particular, the combination of MACCS descriptors and Ward’s clustering was optimal.

INTRODUCTION

The advent of high-throughput biological screening meth-
ods have given pharmaceutical companies the ability to
screen many thousands of compounds in a short time.
However, there are many hundreds of thousands of com-
pounds available both in-house and from commercial ven-
dors. Whilst it may be feasible to screen many or all of the
compounds available, this is undesirable for reasons of cost
and time and may be unnecessary if it results in the
production of some redundant information. Therefore there
has been a great deal of interest in the use of compound
clustering techniques to aid in the selection of a representative
subset of all the compounds available.1- 8 A similar problem
faces those interested in designing compounds for synthesis;
a good design will capture all the required information in
the minimum number of compounds.9

Underpinning the compound selection methods is the
similar property principle10 which states that structurally
similar molecules will exhibit similar physicochemical and
biological properties. Given a clustering method that can
group structurally similar compounds together, application
of this principle implies that the selection, or synthesis, and
testing of representatives from each cluster produced from
a set of compounds should be sufficient to understand the
structure- activity relationships of the whole set, without the
need to test them all.
An appropriate clustering method will, ideally, cluster all

similar compounds together whilst separating active and
inactive compounds into different sets of clusters. The first
factor will ensure that every class of active compound is
represented in the selected subset but that there is no
redundancy. The second factor will minimize the risk that
an inactive compound is selected as the representative of a
cluster containing one or more actives, thereby missing a
class of active compounds.
Clustering is the process of dividing a set of entities into

subsets in which the members of each subset are similar to
each other but different from members of other subsets. There

have been numerous cluster methods described; general
discussions of many of these are given by Gordon,11 by
Everett,12 and by Sneath and Sokal.13 Several of these
methods have be applied to clustering chemical structures;
comprehensive reviews are given by Barnard and Downs14

and by Downs and Willett.15 In outline, the clustering
process for chemical structures is as follows.
(1) Select a set of attributes on which to base the

comparison of the structures. These may be structural
features and/or physicochemical properties.
(2) Characterize every structure in the dataset in terms of

the attributes selected in step one.
(3) Calculate a coefficient of similarity, dissimilarity, or

distance between every pair of structures in the dataset, based
on their attributes.
(4) Use a clustering method to group together similar

structures based on the coefficients calculated in step three.
Some clustering methods may require the calculation of
similarity values between the new objects formed and the
existing objects.
(5) Analyze the resultant clusters or classification hierarchy

to determine which of the possible sets of clusters should
be chosen.
A number of methods are available both for the production

of descriptors in steps (1) and (2) and clusters in step (4).
Whilst there are also a large number of coefficients that might
be used in step (3), the choice of clustering method may
determine which is best suited.
In this paper we present a study aimed at identifying the

most suitable descriptors and clustering methods for use in
compound selection. We have used a variety of methods to
cluster sets of structures with known biological activities and
evaluated the clusters produced according to their ability to
separate active and inactive compounds into different sets
of clusters. We have concerned ourselves with structure
based clustering. For this, the substructure search screens
used in commercial database searching software have often
been used as descriptors. We have examined a number of
these descriptors, together with two developed in-house, and
have considered the use of four commercially available
clustering methods.

† brownr@abbott.com.
‡ yvonne.martin@abbott.com.
X Abstract published in AdVance ACS Abstracts, January 15, 1996.
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Tasks on graphs I

Node level
I Node label (i.e. property) prediction

I Regression
I Classification

I Transductive : predict unlabelled nodes on the same graph

I Inductive : predict node labels on a new graph

I Link (labels) prediction

I Clustering
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Tasks on graphs II

Graph level

I Predict label (i.e. property) for a graph (e.g. toxicity of a
molecule)

I Graph generation

I Metric learning
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Why ML with graphs is particular ?
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Graph problems

Graph space is not an Euclidean space

Variable number of nodes
I No fixed/limit number of nodes

I How to deal with a variable number of nodes/neighbours ?

Permutation (equi/in)variance

I No predefined order of nodes

I ⇒ No order on neighbours ( 6= images)
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Permutation Invariance
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Graphs versus Images

I Constant number of
neighbours

I Fixed position of
neighbours

I We want shift invariance

I Variable number of neighbours

I No predefined ordering of
neighbours

I Permutation (equi/in)variance

Inspired by M. M. Bronstein
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A first problem

Définition : Graph Isomorphism

G1 = (V1, E1) ' G2 = (V2, E2) iff it exists a bijection f :
V1 → V2 s.t. (u, v) ∈ E1 ⇔ (f(u), f(v)) ∈ E2.

Remarks
I Notion of “Equality” between graphs.

I NP-Intermediate problem

I Labeled version : lv(u) = lv(f(u)),∀u ∈ V1
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How to adapt CNN to Graphs ?

How to adapt convolution and pooling to variable dimension and
permutation ?



A timeline

I First attempt before Deep Era

I Explosion of papers since 2018

I See Sergey’s analysis

[data source: dplb]
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Message passing framework
An introduction

Intuition
Update node representation according to neighbours
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General principle
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Convolutions on graphs

I A : Adjacency Matrix

I AX(`)(i, :) : Sum all informations of N (vi)

I AX(`)(i, :)W = X(`+1) : “nearly” updated feature of vi
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Message passing framework

Message

I Aggregate all information of neighboorhood

I m
(`+1)
i =

∑
vj∈N (vi)

f(X
(`)
i , X

(`)
j , ei,j)

I AX(i, :) =
∑

vj∈N (vi)
X(j, :)

Update

I Compute the new representation X(`+1)

I X
(`+1)
i = g(X

(`)
i ,m

(`+1)
i )

I X(`+1)(i, :) = σ(AX(`)(i, :)W +X(`)(i, :))

I σ(·) : non linear activation function (ReLU).

[Gilmer et al., 2017]
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MPNN Layer

Node Feature
Representation

Activation 
function

Diffusion 
Matrix

Learnt 
weights
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Graph Attention Networks

MPNN
I MPNN considers all neighboors in the same way

I Isotropic aggregation

I ⇒ over-smoothing of information

Bringing attention to MPNN

I Weight each contribution of neighboor differently

m`+1
i =

∑
vj∈N (vi)

αi,jX(j, :)

I αi,j : attention coefficient

[Velicković et al., 2017]
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Graph Attention Networks

Attention coefficient

Learnable 
parameters

Normalisation

Edge representation
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Graph Attention Networks

https://github.com/PetarV-/GAT
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MPNN family

Node Representation Learning

I Build representation for nodes

I Useful for node level tasks

I Not complete for graph level

MPNN
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Read Out

How to transform node
representation to graph

representation ?
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Aggregation step

Readout function

ŷ = R({X(L )
i |vi ∈ V })

I Differentiable

I Permutation invariant

I Simple statistics : mean, sum.

I Learnable : [Ying et al., 2018]

MPNN ReadOut
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DiffPool

Original
network

Pooled network
at level 1

Pooled network
at level 2

Graph
classification

Pooled network
at level 3

taken from [Ying et al., 2018]

Aggregation level

I Learnt Cluster Assignment Matrix S(`) ∈ IRnl×nl+1

I Node representation : X(`+1) = S(`)>X(`)

I Adjacency matrix : A(`+1) = S(`)>A(`)S(`)

[Ying et al., 2018]
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Graph Networks

Generalize MPNN
I Theoretical framework
I Three levels of representations:

1. Edge eij
2. Node Xi or hi

3. Graph z

⇒ Three pairs of message/update functions

I Introduce edge representation learning

taken from [Battaglia et al., 2018]

[Battaglia et al., 2018]
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Edge representation

update 
function

aggregation
→ See Guillaume’s presentation for an implementation
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Node representation

message

aggregation of neighbours
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Graph representation

edge message
node message

aggregations
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Theoretical aspects I

Interpretability: How to evaluate GNN ?

I Determine if a GNN can distinguish two graphs

I GNN : G → Rd×N

I G1 ' G2 ⇔ GNN(G1) = GNN(G2) ?
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Theoretical aspects II

Relationship with Weisfeler-Lehman test

I Iterative coloring process

I Polynomial approximation of isomorphism

I “classic” GCNs ≤ WL-Test

I Higher order of WL-test exist

M. Bronstein, medium blog
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Limitations of GNNs

Low pass filtering

I Each iteration aggregates the neighboor’s information

I Aggregation is (usually) isotropic

I Extend to not only low pass : spectral approaches

→ See Muhammet’s talk

Over smoothing

I Adding layers increases smoothing

I At one point: all node’s info is shared

I No real deep networks: generally 2 layers
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Graph generative models

Graph generation

I Create new graphs

I f : Rd → G
I Explore latent euclidean space

Application

I Drug discovery

I Generate new molecules with particular properties

Generator

S

P O

CH3

O CH3

O
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Graph Auto Encoders

Encoder

I GNN

Z = encΦ(A)

Decoder

I Reconstruct Adjacency
matrix

Â(i, j) = σ(z>i zj)
Problem

min
Φ

N∑
i=1

‖A(i, :)− Â(i, :)‖2

Encoder Decoder
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Other graph generation approaches

I Variationnal auto encoders
(KL divergence)

I GANs

I Reinforcement learning

I Recursive processes

[De Cao and Kipf, 2018]

[Liao et al., 2019]
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Application domains of GNN

Node level prediction

I Citation networks

I Node Clustering

Link prediction

I Collaboration graphs

I Knowledge graphs

I Temporal graphs

I Recommandation

Graph prediction

I Molecular property prediction
I Physiologic, toxicity, physical, quantum mechanics . . .

I Protein-Protein interactions

I Programs, source code
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Emergence of datasets

The rise of Deep Learning in Computer Vision

I 3 causes :
I Number of layers
I Computationnal power
I Datasets

I Standardized big datasets

I MNIST, ImageNet, CIFAR, . . .
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Datasets for Graph Machine Learning I

I ogb.stanford.edu

I 15 datasets

I Molecular graphs,
citation networks,. . .
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Datasets for Graph Machine Learning II

moleculenet.ai
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Datasets for Graph Machine Learning III

MOSES

I https://github.com/molecularsets/moses

I Dataset for generative models
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Conclusion and Outlooks

GNNs
I Bring representation learning to graphs

I Dynamic and growning field

I Still in infancy, but supported by industry
I Still some limitations

I Still computes a Euclidean embedding
I Not deep yet

Outlooks
I Dynamic graphs

I Interpretability

I Real “Deep” Learning ?

I Improve readout ? is it useful ?
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Questions and Discussion

I Possible use of GNN ?

I How to find our place ?

I Collaborations ?
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