Enumeration Classes Defined by Circuits

Nadia Creignou, Arnaud Durand, Heribert Vollmer

NormaSTIC 2023

Creignou, Durand, Vollmer

Enumeration ?

Introduction

► Topic: algorithms and complexity for enumeration problems.

Enumeration problem: generate all solutions of a problem one by one and without repetition.

Examples: generate all models of a propositional formula, all triangles in a graph, etc

Subject has deserved a lot of attention in graphs algorithms and combinatorics but also in data management.

Input sensitive versus output sensitive complexity

- Input-sensitive approach: Measure of the time complexity of an enumeration algorithm in the size of the input
- Output-sensitive approach: Measure of the time complexity of an enumeration algorithm in the size of the input and the ouput.

How to measure the complexity of such problems?

Focus is put on the dynamic of the generation process: the delay For combinatorial problems, three main types of tractability:

- OutputP: polynomial time in the size of |x| and the solutions set.
- \blacktriangleright IncP: computing the $(i+1){\rm th}$ solution is polynomial in |x| and i
- DelayP: computing all solutions with a delay polynomial in |x| between two solutions. First attempt to capture *efficient* enumeration.

Very few lower bounds. All under complexity hypothesis.

Very few lower bounds

How to prove that an enumeration problem is not in DelayP?

- Show hardness of some related decision problem: For instance one cannot enumerate the models of any Boolean formula in DelayP, unless P = NP.
- Show that it is as hard as enumerating the minimal transversals of a hypergraph.

Capturing efficient enumeration

Polynomial delay: An algorithm runs with polynomial delay if the pre-processing step and the delay between two consecutive solutions are polynomially bounded in the size of the input.

EXP number of objects to enumerate

Classical algorithm : flashlight binary search for satisfiability problems

Capturing efficient enumeration

Linear delay: An algorithm runs with linear delay if the pre-processing is polynomially bounded in the size of the input and the delay between two consecutive solutions σ_i and σ_{i+1} is linearly bounded in (|σ_i| + |σ_{i+1}|).

EXP number of objects to enumerate

Classical algorithm : enumeration of S-T paths in a DAG

Towards more efficiency

In the context of data management and query answering:

- The measures above, even linear delay, are not considered as really tractable.
- Consider CDolin: problems that can be enumerated on RAMs with constant delay after linear time preprocessing (Durand and Grandjean'07)
- Contains a lot of natural query problems
- Conditional lower bounds have been proved (e.g. acyclic conjunctive queries based on hypothesis on the complexity of Boolean Matrix Computation (BMM)).

In this work

- Focus on enumeration below DelayP
- Propose enumeration algorithms based on "small" Boolean circuits
- Low classes but of a different nature than imposing constant delay
- Contributions and objectives:
 - Propose a hierarchy of small enumeration classes
 - Show they are populated by natural problems
 - Prove lower bounds! some of them non conditionally.

Circuit enumeration - simplistic view

- Starting point: a family of circuits (C_n) of a given kind.
- x is the main input
- successive outputs $y_1, y_2, ..., y_i, ...$ serve as auxiliary input

Compute next solution from the previous one by a circuit

Circuit enumeration: using precomputation and memory

A hierarchy of classes

 \mathbf{AC}^0 uniform circuit families of polynomial size and constant depth, using unbounded fan-in AND/OR gates plus negation gates.

A catalog of classes: $\mathbf{Del}_{\text{precomp}}^{\text{memory}} \cdot \mathbf{AC}^0$

- ▶ **Del**·**AC**⁰: no precomputation, no memory
- ▶ $\mathbf{Del}^{c} \cdot \mathbf{AC}^{0}$: no precomp, constant size memory
- ▶ $\mathbf{Del}^{P} \cdot \mathbf{AC}^{0}$: no precomp, polynomial size memory
- ▶ $\mathbf{Del}_{\mathbf{P}} \cdot \mathbf{AC}^0$: polytime precomp, no memory
- ▶ $\mathbf{Del}_{\mathbf{P}}^{c} \cdot \mathbf{AC}^{0}$: polytime precomp, constant size memory
- ▶ $\mathbf{Del}_{\mathbf{P}}^{\mathrm{P}} \cdot \mathbf{AC}^{0}$: polytime precomp, polynomial size memory
- ▶ Unbounded memory: $\mathbf{Del}^* \cdot \mathbf{AC}^0$, $\mathbf{Del}^*_{\mathbf{P}} \cdot \mathbf{AC}^0$

A first view of the hierarchy

- Inclusions between classes
- Bold lines denote (obvious) strict inclusions

Comparison with constant delay

- CDolin: problems that can be enumerated on RAMs with constant delay after linear time preprocessing
- Classes $\mathbf{Del} \cdot \mathbf{AC}^0$ and $\mathbf{CD} \circ \mathbf{lin}$ are incomparable
 - Output the parity of the number of 1 is in CDolin (and not in Del·AC⁰)
 - Enumerate the 1 entries of A × B with A, B Boolean matrices is in Del·AC⁰
- $\blacktriangleright \mathbf{CD} \circ \mathbf{lin} \subsetneq \mathbf{Del}_{lin}^{\mathbf{P}} \cdot \mathbf{AC}^{\mathbf{0}}.$

An example: Gray codes

Problem: Enumerate $\{0, 1\}$ -words of a given length n by changing one bit between two consecutive outputs.

One method: Binary reflected Gray code G_n . The 2^n words w and their range r for n = 4.

r:	w	r:	w
0:	0000	8:	1100
1:	0001	9 :	1101
2:	0011	10 :	1111
3 :	0010	11 :	1110
4:	0110	12 :	1010
5:	0111	13 :	1011
6 :	0101	14:	1001
7:	0100	15 :	1000

Gray codes enumeration

▶ Given
$$n$$
 and $r < 2^n$
▶ Let $r = b_{n-1} \cdots b_1 b_0$ (in binary)
▶ Let $G_r^n = a_{n-1} \cdots a_1 a_0 \in \Sigma^n$ be the r th word.
Well known that, for all $j = 0, ..., n - 1$,

$$b_j = \sum_{i=j}^{n-1} a_i \mod 2$$
 and $a_j = (b_j + b_{j+1}) \mod 2$.

Given a word, computing its rank is computing parity.

Result: Given 1^n , enumerating all words of length n in a Gray code order is in $\mathbf{Del}^c \cdot \mathbf{AC}^0 \setminus \mathbf{Del}_{\mathbf{P}} \cdot \mathbf{AC}^0$

Creignou, Durand, Vollmer

Gray codes enumeration

In $\mathbf{Del}^{c} \cdot \mathbf{AC}^{0}$. Classical method:

- Step 0 : output the word $0 \cdots 0$ of length n.
- Step 2k + 1: switch the bit at position 0.
- Step 2k + 2: find minimal position i where there is a 1 and switch bit at position i + 1.

Not in $\mathbf{Del}_{\mathbf{P}} \cdot \mathbf{AC}^0$. Suppose it is:

- Consider arbitrary $w = w_{n-1} \dots w_0$
- ▶ There exists $r < 2^n$ s.t. $G_r^n = w$. Let $w' = G_{r+1}^n$
- Compare w and w': decide which step has been applied
- Hence decide is r is odd or even and the parity of the number of 1s in w.

Contradict classical result that PARITY is not in AC^0 .

Satisfiability problems

Question: Is AC^0 powerful enough to serve as a main enumerator engine for interesting SAT fragments?

Enum-Sat

Input: A set of clauses Γ over a set of variables V

Output: an enumeration of all assignments that satisfy Γ

- ▶ ENUM-MONOTONE-SAT : positive (resp. negative) clauses
- \blacktriangleright ENUM-KROM-SAT : clauses of length at most 2
- ▶ ENUM-XOR-SAT : clauses with xor disjunctions
- ▶ ENUM-HORN-SAT : clauses with at most one positive literal

Enumerating SAT using $\mathbf{A}\mathbf{C}^0$ circuits

ENUM-MONOTONE-SAT $\in \mathbf{Del} \cdot \mathbf{AC}^0$

ENUM-KROM-SAT $\in \mathbf{Del}_{\mathbf{P}} \cdot \mathbf{AC}^0 \setminus \mathbf{Del}^* \cdot \mathbf{AC}^0$.

Lower bound: reduction from ST-CONNECTIVITY.

Upper bound:

- no memory is needed
- Do not use the flashlight algorithm
- Build on the Apsvall, Plass, Tarjan 79's algorithm for 2-SAT as a preprocessing.

ENUM-XOR-SAT $\in \mathbf{Del}_{\mathbf{P}}^{c} \cdot \mathbf{AC}^{0} \setminus \mathbf{Del}^{*} \cdot \mathbf{AC}^{0}$.

Upper bound: Gaussian elimination + Gray code enumeration. Lower bound: Express PARITY with XOR-constraints.

New: in fact, ENUM-XOR-SAT $\in \mathbf{Del}_{\mathbf{P}} \cdot \mathbf{AC}^0$

ENUM-XOR-SAT $\in \mathbf{Del}_{\mathbf{P}} \cdot \mathbf{AC}^0 \setminus \mathbf{Del}^* \cdot \mathbf{AC}^0$.

Where is $\operatorname{Enum-HORN-SAT}$ in this hierarchy of circuits?

Open: Known to be in DelayP, but AC^0 might not be powerful enough even with memory and precomputation.

New: ENUM-HORN-SAT is **Del**·**P**-complete via parsimonious like reductions.

Separating classes without precomputation

Proposition: $\mathbf{Del} \cdot \mathbf{AC}^0 \subsetneq \mathbf{Del}^c \cdot \mathbf{AC}^0 \subsetneq \mathbf{Del}^P \cdot \mathbf{AC}^0 \subsetneq \mathsf{DelayP}.$

- ► All results are unconditional
- Each proof exhibits a concrete problem in the upper class which is not in the lower one.
- ▶ They build on existing lower bounds, mainly on the fact that PARITY is not in **AC**⁰ (even non-uniform).

Focus on $\mathbf{Del} \cdot \mathbf{AC}^0 \subsetneq \mathbf{Del}^c \cdot \mathbf{AC}^0$

Let $x \in \{0, 1\}^*$, $x = x_1 \dots x_n$ and $m = \lceil \log n \rceil + 1$. Consider $R_L = A \cup B$ with: $A = \{ y \in \{0, 1\}^* | |y| = m, y \neq 0^m, y \neq 1^m \}$

• $B = \{1^m\}$ if x has an even number of ones, else $B = \{0^m\}$.

Why is R_L in $\mathbf{Del}^c \cdot \mathbf{AC}^0$? Simply because $2^m - 2 \approx n$ dummy solutions to enumerate (A) let enough "time" to know if x has an even number of 1 by patiently transmitting one bit of memory from one step to the other...

Focus $\mathbf{Del} \cdot \mathbf{AC}^0 \subsetneq \mathbf{Del}^c \cdot \mathbf{AC}^0$

Let $x \in \{0, 1\}^*$, $x = x_1 \dots x_n$ and $m = \lceil \log n \rceil + 1$. Consider $R_L = A \cup B$ with:

•
$$A = \{ y \in \{0,1\}^* | |y| = m, y \neq 0^m, y \neq 1^m \}$$

• $B = \{1^m\}$ if x has an even number of ones, else $B = \{0^m\}$

Why is R_L not in **Del**·**AC**⁰?

Suppose it is and let (C_n) be the family doing it. Let z_1, \ldots, z_t be an enumeration of A. We construct a circuit family as follows:

- compute in parallel all $C_{|\cdot|}(x)$ and $C_{|\cdot|}(x, z_i)$ for $1 \le i \le t$
- check which of 0^m or 1^m appear

One conditional result

Proposition: $\mathbf{NP} \neq \mathbf{PSPACE}$ implies $\mathbf{Del}^{c} \cdot \mathbf{AC}^{0} \setminus \mathbf{Del}_{\mathbf{P}} \cdot \mathbf{AC}^{0} \neq \emptyset$.

(Indirect) consequence of a result by Hertrampf, Lautemann, Schwentick, Vollmer and Wagner (93) which shows that **PSPACE** is serializable in AC^0 .

Serializable : Computations in **PSPACE** can be cut into an exponentially long sequence of AC^0 computations that pass a constant number of bits to the next one.

Summary of separation results

- Inclusions between classes
- Bold lines denote strict inclusions
- BMM-conj: Boolean Matrix Multiplication can not be done in O(m), where m is the number of non-zero-entries of the two matrices

Creignou, Durand, Vollmer

Conclusion and open problems

- We introduced enumeration algorithms based on circuits
- Definitions are modular (one can vary the kind of circuits, the memory usage and precomputation)
- Even small classes of circuits lead to powerful enumeration engine (inside DelayP)
- Some lower bounds can be proven using two ingredients
 - Classical lower bounds on circuit
 - Enumeration algorithms are forced to output regularly
- Lot's of open problems and room to extend methods to find "natural" lower bounds for well-known algorithmic problems