
Enumeration Classes Defined by Circuits

Nadia Creignou, Arnaud Durand, Heribert Vollmer

NormaSTIC 2023

Creignou, Durand, Vollmer Enumeration Classes Defined by Circuits 1



Enumeration ?
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Introduction

I Topic: algorithms and complexity for enumeration problems.
I Enumeration problem: generate all solutions of a problem one

by one and without repetition.

Examples: generate all models of a propositional formula, all
triangles in a graph, etc

I Subject has deserved a lot of attention in graphs algorithms
and combinatorics but also in data management.
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Input sensitive versus output sensitive
complexity

I Input-sensitive approach: Measure of the time complexity of
an enumeration algorithm in the size of the input

I Output-sensitive approach: Measure of the time complexity of
an enumeration algorithm in the size of the input and the
ouput.
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How to measure the complexity of such
problems?

Focus is put on the dynamic of the generation process: the delay
For combinatorial problems, three main types of tractability:

I OutputP: polynomial time in the size of |x| and the solutions
set.

I IncP: computing the (i+ 1)th solution is polynomial in |x|
and i

I DelayP: computing all solutions with a delay polynomial in |x|
between two solutions. First attempt to capture efficient
enumeration.

Very few lower bounds. All under complexity hypothesis.
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Very few lower bounds

How to prove that an enumeration problem is not in DelayP?
I Show hardness of some related decision problem: For instance

one cannot enumerate the models of any Boolean formula in
DelayP, unless P = NP.

I Show that it is as hard as enumerating the minimal
transversals of a hypergraph.

Creignou, Durand, Vollmer Enumeration Classes Defined by Circuits 6



Capturing efficient enumeration

I Polynomial delay: An algorithm runs with polynomial delay if
the pre-processing step and the delay between two consecutive
solutions are polynomially bounded in the size of the input.

Classical algorithm : flashlight binary search for satisfiability
problems
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Capturing efficient enumeration

I Linear delay: An algorithm runs with linear delay if the
pre-processing is polynomially bounded in the size of the input
and the delay between two consecutive solutions σi and σi+1
is linearly bounded in (|σi|+ |σi+1|).

Classical algorithm : enumeration of S-T paths in a DAG
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Towards more efficiency

In the context of data management and query answering:
I The measures above, even linear delay, are not considered as

really tractable.
I Consider CD◦lin: problems that can be enumerated on

RAMs with constant delay after linear time preprocessing
(Durand and Grandjean’07)

I Contains a lot of natural query problems
I Conditional lower bounds have been proved (e.g. acyclic

conjunctive queries based on hypothesis on the complexity of
Boolean Matrix Computation (BMM)).
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In this work

I Focus on enumeration below DelayP
I Propose enumeration algorithms based on "small" Boolean

circuits
I Low classes but of a different nature than imposing constant

delay
I Contributions and objectives:

I Propose a hierarchy of small enumeration classes
I Show they are populated by natural problems
I Prove lower bounds! some of them non conditionally.
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Circuit enumeration - simplistic view
I Starting point: a family of circuits (Cn) of a given kind.
I x is the main input
I successive outputs y1, y2, ..., yi, ... serve as auxiliary input

Compute next solution from the previous one by a circuit

Circuit 


output
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Circuit enumeration: using precomputation
and memory

Circuit 





Precomputation




output
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A hierarchy of classes

AC0 uniform circuit families of polynomial size and constant
depth, using unbounded fan-in AND/OR gates plus negation gates.

A catalog of classes: Delmemory
precomp ·AC0

I Del·AC0: no precomputation, no memory
I Delc ·AC0: no precomp, constant size memory
I DelP ·AC0: no precomp, polynomial size memory
I DelP ·AC0 : polytime precomp, no memory
I DelcP ·AC0: polytime precomp, constant size memory
I DelPP ·AC0: polytime precomp, polynomial size memory
I Unbounded memory: Del∗ ·AC0, Del∗P ·AC0
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A first view of the hierarchy

Del·AC0

Delc ·AC0

DelP ·AC0

Del∗ ·AC0

DelP ·AC0

DelcP ·AC0

DelPP ·AC0

Del∗P ·AC0

DelayP

IncP

I Inclusions between classes
I Bold lines denote (obvious) strict inclusions
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Comparison with constant delay

I CD◦lin: problems that can be enumerated on RAMs with
constant delay after linear time preprocessing

I Classes Del·AC0 and CD◦lin are incomparable
I Output the parity of the number of 1 is in CD◦lin (and not in

Del·AC0)
I Enumerate the 1 entries of A×B with A, B Boolean matrices

is in Del·AC0

I CD◦lin ( DelPlin ·AC0.
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An example: Gray codes

Problem: Enumerate {0, 1}-words of a given length n by changing
one bit between two consecutive outputs.

One method: Binary reflected Gray code Gn.
The 2n words w and their range r for n = 4.

r : w r : w
0 : 0000 8 : 1100
1 : 0001 9 : 1101
2 : 0011 10 : 1111
3 : 0010 11 : 1110
4 : 0110 12 : 1010
5 : 0111 13 : 1011
6 : 0101 14 : 1001
7 : 0100 15 : 1000
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Gray codes enumeration

I Given n and r < 2n

I Let r = bn−1 · · · b1b0 (in binary)
I Let Gn

r = an−1 · · · a1a0 ∈ Σn be the rth word.
Well known that, for all j = 0, ..., n− 1,

bj =
n−1∑
i=j

ai mod 2 and aj = (bj + bj+1) mod 2.

Given a word, computing its rank is computing parity.

Result: Given 1n, enumerating all words of length n in a Gray code
order is in Delc ·AC0\DelP ·AC0
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Gray codes enumeration

In Delc ·AC0. Classical method:
I Step 0 : output the word 0 · · · 0 of length n.
I Step 2k + 1 : switch the bit at position 0.
I Step 2k + 2: find minimal position i where there

is a 1 and switch bit at position i+ 1.

3 : 0010
4 : 0110
5 : 0111
6 : 0101

Not in DelP ·AC0. Suppose it is:
I Consider arbitrary w = wn−1 . . . w0
I There exists r < 2n s.t. Gn

r = w. Let w′ = Gn
r+1

I Compare w and w′: decide which step has been applied
I Hence decide is r is odd or even and the parity of the number

of 1s in w.
Contradict classical result that Parity is not in AC0.
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Satisfiability problems

Question: Is AC0 powerful enough to serve as a main enumerator
engine for interesting SAT fragments?
Enum-Sat
Input: A set of clauses Γ over a set of variables V
Output: an enumeration of all assignments that satisfy Γ

I Enum-Monotone-Sat : positive (resp. negative) clauses
I Enum-Krom-Sat : clauses of length at most 2
I Enum-XOR-Sat : clauses with xor disjunctions
I Enum-Horn-Sat : clauses with at most one positive literal
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Enumerating SAT using AC0 circuits

Enum-Monotone-Sat ∈ Del·AC0

Del·AC0

Delc ·AC0

DelP ·AC0

Del∗ ·AC0

DelP ·AC0

DelcP ·AC0

DelPP ·AC0

Del∗P ·AC0

DelayP

IncP
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Enumerating SAT using AC0 circuits

Enum-Krom-Sat ∈ DelP ·AC0 \Del∗ ·AC0.

Lower bound: reduction from st-connectivity.

Upper bound:
I no memory is needed
I Do not use the flashlight algorithm
I Build on the Apsvall, Plass, Tarjan 79’s

algorithm for 2-Sat as a preprocessing.
Del·AC0

Delc ·AC0

DelP ·AC0

Del∗ ·AC0

DelP ·AC0

DelcP ·AC0

DelPP ·AC0

Del∗P ·AC0

DelayP

IncP
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Enumerating SAT using AC0 circuits

Enum-XOR-Sat ∈ Delc
P ·AC0 \Del∗ ·AC0.

Upper bound: Gaussian elimination + Gray code
enumeration.
Lower bound: Express Parity with
XOR-constraints.

Del·AC0

Delc ·AC0

DelP ·AC0

Del∗ ·AC0

DelP ·AC0

DelcP ·AC0

DelPP ·AC0

Del∗P ·AC0

DelayP

IncP
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Enumerating SAT using AC0 circuits

New: in fact, Enum-XOR-Sat ∈ DelP ·AC0

Enum-XOR-Sat ∈ DelP ·AC0 \Del∗ ·AC0.

Del·AC0

Delc ·AC0

DelP ·AC0

Del∗ ·AC0

DelP ·AC0

DelcP ·AC0

DelPP ·AC0

Del∗P ·AC0

DelayP

IncP
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Enumerating SAT using AC0 circuits

Where is Enum-Horn-Sat in this hierarchy of
circuits?

Open: Known to be in DelayP, but AC0 might not
be powerful enough even with memory and
precomputation.

New: Enum-Horn-Sat is Del·P-complete via
parsimonious like reductions. Del·AC0

Delc ·AC0

DelP ·AC0

Del∗ ·AC0

DelP ·AC0

DelcP ·AC0

DelPP ·AC0

Del∗P ·AC0

DelayP

IncP
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Separating classes without precomputation

Proposition: Del·AC0 ( Delc ·AC0 ( DelP ·AC0 ( DelayP.

I All results are unconditional
I Each proof exhibits a concrete problem in the upper class

which is not in the lower one.
I They build on existing lower bounds, mainly on the fact that

Parity is not in AC0 (even non-uniform).
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Focus on Del·AC0 ( Delc ·AC0

Let x ∈ {0, 1}∗, x = x1 . . . xn and m = dlogne+ 1. Consider
RL = A ∪B with:
I A =

{
y ∈ {0, 1}∗

∣∣|y| = m, y 6= 0m, y 6= 1m
}

I B = { 1m} if x has an even number of ones, else B = { 0m}.

Why is RL in Delc ·AC0? Simply because 2m − 2 ≈ n dummy
solutions to enumerate (A) let enough "time" to know if x has an
even number of 1 by patiently transmitting one bit of memory
from one step to the other...
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Focus Del·AC0 ( Delc ·AC0

Let x ∈ {0, 1}∗, x = x1 . . . xn and m = dlogne+ 1. Consider
RL = A ∪B with:
I A =

{
y ∈ {0, 1}∗

∣∣|y| = m, y 6= 0m, y 6= 1m
}

I B = { 1m} if x has an even number of ones, else B = { 0m}

Why is RL not in Del·AC0?
Suppose it is and let (Cn) be the family doing it. Let z1, . . . , zt be
an enumeration of A. We construct a circuit family as follows:
I compute in parallel all C|·|(x) and C|·|(x, zi) for 1 ≤ i ≤ t
I check which of 0m or 1m appear
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One conditional result

Proposition:
NP 6= PSPACE implies Delc ·AC0 \DelP ·AC0 6= ∅.

(Indirect) consequence of a result by Hertrampf, Lautemann,
Schwentick, Vollmer and Wagner (93) which shows that
PSPACE is serializable in AC0.

Serializable : Computations in PSPACE can be cut into an
exponentially long sequence of AC0 computations that pass a
constant number of bits to the next one.
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Summary of separation results

Del·AC0

Delc ·AC0

DelP ·AC0

Del∗ ·AC0

DelP ·AC0

DelcP ·AC0

DelPP ·AC0

Del∗P ·AC0

CD◦lin

DelayP

IncP

if NP 6= PSPACE

under BMM-conj

I Inclusions between classes
I Bold lines denote strict inclusions
I BMM-conj: Boolean Matrix Multiplication can not be done in
O(m), where m is the number of non-zero-entries of the two
matrices
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Conclusion and open problems

I We introduced enumeration algorithms based on circuits
I Definitions are modular (one can vary the kind of circuits, the

memory usage and precomputation)
I Even small classes of circuits lead to powerful enumeration

engine (inside DelayP)
I Some lower bounds can be proven using two ingredients

I Classical lower bounds on circuit
I Enumeration algorithms are forced to output regularly

I Lot’s of open problems and room to extend methods to find
"natural" lower bounds for well-known algorithmic problems
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