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GNNs expressive power

Weisfeiler-Lehman hierarchy [Xu et al., 2019]

Spectral response
[Balcilar et al., 2021b] Counting power [Chen et al., 2020]
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GNNs expressive power

Contributions

New GNN design strategy based on Context Free Grammar (CFG).

Example of 1-WL CFG.

Grammatical Graph Neural Network (G2N2) a 3-WL GNN.

G2N2 spectral response and counting power.

Jason Piquenot 3 / 16



MATLANG

In [Brijder et al., 2019] they introduced MATLANG a matrix language.

Matlang

ML (L) is a matrix language with an allowed operation set L = {op1, . . . , opn},
where opi ∈ {·,+, T,diag,Tr, 1,⊙,×, f}.

Sentence

e(X) ∈ R is a sentence in ML (L) if it consists of any possible consecutive
operations in L, operating on a given matrix X and resulting in a scalar value.

As an exemple, 1T (X ⊙ diag (1)) 1 is a sentence in ML
(

T, 1,⊙, ·, diag
)
that

computes trace of square matrix X.
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MATLANG

ML(L) -equivalent for matrices

Two matrices A and B in Mm,n (R) are said to be ML (L) -equivalent, denoted by
A ≡ML(L) B, if and only if e(A) = e(B) for all sentences in ML (L).

ML (L) -equivalent for graphs

Two graphs G and H of the same order are said to be ML (L) -equivalent, denoted
by G ≡ML(L) H, if and only if their adjacency matrices are ML (L) -equivalent.
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MATLANG

In [Geerts and Reutter, 2021], they proved the following theorems for the sets of
operations L1 = {·, T, 1, diag} and L3 = {·, T, 1, diag,⊙}.

1-WL equivalence

Two adjacency matrices are indistinguishable by the 1-WL test if and only if
e(AG) = e(AH) for all e ∈ L1. Hence, all possible sentences in L1 are the same for
1−WL-equivalent adjacency matrices. Thus,

AG ≡1-WL AH ⇐⇒ AG ≡ML(L1)
AH

3-WL equivalence

Two adjacency matrices are indistinguishable by the 3-WL test if and only if
e(AG) = e(AH) for all e ∈ L3. Hence, all possible sentences in L3 are the same for
3−WL-equivalent adjacency matrices. Thus,

AG ≡3-WL AH ⇐⇒ AG ≡ML(L3)
AH
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From Context Free Grammar To GNN

For L1 = {·, T, 1, diag}, define
GL1

= (V,Σ, R, St).

V = {M,Vc, Vl, S}

Σ = {A, diag, 1, T, (, )}
St = S

where the rules in R are

S → (Vl)(Vc) | diag (S) | SS

M → MM | (M)T | diag (Vc) | (Vc)(Vl) | A

Vc → MVc | (Vl)
T | VcS | 1

Vl → VlM | (Vc)
T | SVl

Jason Piquenot 7 / 16



From Context Free Grammar To GNN

Theorem (ML (L1) Reduced CFG)

The following CFG denoted by r-GL1
is as expressive as 1-WL.

Vc → diag (Vc)Vc | AVc | 1

Corollary (GNNML1 CFG)

The following CFG, as expressive than ML(L1) represents GNNML1
[Balcilar et al., 2021a].

Vc → Vc ⊙ Vc | AVc | 1

GNNML1 node update:

H(l+1) = σ(H(l) ·W (l,1) +A ·H(l) ·W (l,2)

+H(l) ·W (l,3) ⊙H(l) ·W (l,4))
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From Context Free Grammar To GNN

Proposition (GCN CFG)

The following CFG is strictly less expressive than ML(L1).

Vc → C1Vc | · · · | CkVc | 1

When Cs is include in ML(L1).

As an example, the following CFG, strictly less expressive than ML (L1) represents
GCN [Kipf and Welling, 2017].

Vc → CVc | 1

Where C = diag ((A+ I)1)−
1
2 (A+ I)diag ((A+ I)1)−

1
2

Jason Piquenot 9 / 16



From CFG to G2N2

Theorem (ML (L3) Reduced CFG)

The following CFG denoted by r-GL3
is as expressive as 3-WL.

Vc → MVc | 1
M → (M ⊙M) | MM | diag (Vc) | A

G2N2 layer :

Jason Piquenot 10 / 16



From CFG to G2N2

G2N2 architecture :

G2N2 update equation

C(l+1) = mlp(C(l)|L1(C(l))⊙L2(C(l))|

L3(C(l))·L4(C(l))|diag(L5(H
(l)))),

H(l+1) =
S(l+1)∑
i=1

C(l+1)
i H(l)W (l,i).
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G2N2 expressive power

Theorem (G2N2 in the WL hierarchy)

G2N2 is as expressive as 3-WL.

Table: The accuracy on EXP and SR25 datasets denotes the ratio of pairs of non
isomorphic respectively 1-WL equivalent and 3-WL equivalent graphs that are separate
by the model.

Method EXP SR25

1-WL-bounded GNN 0% 0%
CHEBNET 87% 0%
3-WL-bounded GNN 100% 0%
PPGN 100% 0%

G2N2 100% 0%

I2-GNN 100% 100%
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G2N2 expressive power

Theorem (G2N2 counting power)

G2N2 can count chordal cycle and cycle up to lenght 6 at edge level.

Table: G2N2 normalised MAE on counting substructures at edge level.

triangle 4-cycle 5-cycle 6-cycle chordal cycle

3.99e-04 4.55e-04 2.93e-03 3.58e-03 1.56e-04
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G2N2 expressive power

Theorem (G2N2 spectral response)

G2N2 can approximate low-pass, high-pass and band-pass filter in the spectral
domain.

Table: R2 score on spectral filtering node regression problems. Results are median of 10
different runs.

Method Low-pass High-pass Band-pass

MLP 0.9749 0.0167 0.0027
GCN 0.9858 0.0863 0.0051
GAT 0.9811 0.0879 0.0044
GIN 0.9824 0.2934 0.0629
CHEBNET 0.9995 0.9901 0.8217
PPGN 0.9991 0.9925 0.1041
GNNML1 0.9994 0.9833 0.3802
GNNML3 0.9995 0.9909 0.8189

G2N2 0.9996 0.9994 0.8206

On the left G2N2’s prediction, on the center the input and on the right, the target
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Experiments on downstream tasks

Table: Results on QM9 dataset focusing on the best methods. The metric is MAE, the
lower, the better.

Target I2 GNN PPGN(12) PPGN(1) G2N2(12)

µ 0.428 0.231 0.0934 0.0973
α 0.230 0.382 0.318 0.183
ϵhomo 0.00261 0.00276 0.00174 0.0022
ϵlumo 0.00267 0.00287 0.0021 0.00215
∆ϵ 0.0038 0.00406 0.0029 0.00296

R2 18.64 16.07 3.78 1.12
ZPVE 0.00014 0.00064 0.000399 0.000166
U0 0.211 0.234 0.022 0.0513
U 0.206 0.234 0.0504 0.0513
H 0.269 0.229 0.0294 0.0513
G 0.261 0.238 0.024 0.0513
Cv 0.0730 0.184 0.144 0.0702

Table: Results of G2N2 on TUD dataset compared to the best competitor. The metric is
accuracy, the higher, the better.

Dataset G2N2 rank Best GNN competitor

MUTAG 92.0±4.3 2 92.2±7.5
PTC 71.8±6.7 1 68.2±7.2
Proteins 77.8±3.2 1 77.4±4.9
NCI1 80.2±2.1 8 83.5±2.0
IMDB-B 76.8±2.8 2 77.8±3.3
IMDB-M 54.0±2.93 2 54.3±3.3
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conclusion

G2N2 assets

3-WL equivalent
Large spectral response
Counting power at edge level
Direct from CFG

G2N2 drawbacks

Time complexity O
(
n3

)
Memory complexity O

(
n2

)
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