Computation of pharmacophores and subsequent analyse*s Academic research carried out in Caen

Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, CERMN, Caen, FRANCE

https://www.greyc.fr/equipes/codag/, https://cermn.unicaen.fr/

Rational drug design Alzheimer disease

KEGG PATHWAY Database, http://www.genome.jp/kegg/pathway.html

The search for a drug ... as an optimization problem

- ► Objective :
 - Maximize the therapeutic effect,
 - Limit all side effects,
 - Avoid any adverse effect.

GREYC/CERMN

ph4s in Caen

The input: molecules (ligands) whose 2D structures are grapherer SDF file format: the atoms/the vertices

24	27 0	0	0	0			999	٧
2.1456	0.24	61		0.0000	С	0	0	
2.1446	-0.41	39		0.0000	С	0	0	
2.8584	-0.82	75		0.0000	С	0	0	
2.8570	-1.65	25		0.0000	С	0	0	
2.1419	-2.06	39		0.0000	Ν	0	0	
1.4281	-1.65	03		0.0000	С	0	0	
1.4293	-0.82	52		0.0000	С	0	0	
0.7145	-0.41	25		0.0000	С	0	0	
0.7145	0.41	25		0.0000	С	0	0	
0.0000	0.82	50		0.0000	С	0	0	
-0.7145	0.41	25		0.0000	С	0	0	
-1.4290	0.82	50		0.0000	С	0	0	
-2.1435	0.41	25		0.0000	С	0	0	
-2.8592	0.82	38		0.0000	Ν	0	0	
-3.5735	0.41	00		0.0000	С	0	0	
-3.5723	-0.25	00		0.0000	0	0	0	
-4.2892	0.82	13		0.0000	С	0	0	
-5.0707	0.79	61		0.0000	С	0	0	
-4.6582	1.510	06		0.0000	С	0	0	
-2.1435	-0.41	25		0.0000	Ν	0	0	
-1.4290	-0.82	50		0.0000	С	0	0	
-0.7145	-0.41	25		0.0000	С	0	0	
0.0000	-0.82	50		0.0000	С	0	0	
-2.8602	1.37	38		0.0000	н	0	0	

2000

The input: molecules (ligands) whose 2D structures are graphererC SDF file format: the bonds/edges

13	20	1	0
14	15	1	0
14	24	1	0
15	16	2	0
15	17	1	0
17	18	1	0
18	19	1	0
19	17	1	0
20	21	2	0
21	22	1	0
22	11	1	0
22	23	2	0
23	8	1	0

The input: molecules (ligands) whose 2D structures are graphererC SDF file format: the properties

> <CMPD_CHEMBLID> CHEMBL3685020

> <STANDARD_TYPE> Ki

> <RELATION>

> <STANDARD_VALUE> 0.03

> <STANDARD_UNITS> nM

```
> <Molecular_Weight> 303.35778
```


The pharmacophoric graph

An abstracted representation of a molecule

Pharmacophoric features

- Hydrogen Bond Acceptor, Hydrogen Bond Donor, aromatic Ring, Hydrophobic area, Positively ionizable group, Negatively ionizable group^a
- an adjustable part of the input.

Skeletal formula

Feature occurrences

Pharmacophoric graph

The Pharmacophoric graph (of a molecule)

- A vertex: an occurrence of a feature
- An edge: the distance between two features

GREYC/CERMN

ph4s in Caen

A pharmacophore

- An occurrence of a pharmacophore in a molecule an embedding that fits:
 - the labels of the features,
 - the distance constraints.

A pharmacophore:

Given a dataset of molecules,

- A graph of pharmacophoric features whose extent is:
 - sufficiently large,
 - discriminative enough.

A visual programming environment to implement a pharmacophore mining process

The Pharmacophore Network: A Computational Method for Exploring Structure-Activity Relationships from Jean-Philippe Métivier, Bertrand Cuissart, Ronan Bureau, Alban Lepailleur J. Med. Chem, 2018, Volume61, Issue8, Page 3551-3564 D0I10.1021/acs.jmedchem.7b01890

Norns

A visual programming environment to implement a pharmacophore mining process

 The Pharmacophore Network: A Computational Method for Exploring Structure-Activity Relationships from Jean-Philippe Métivier, Bertrand Cuissart, Ronan Bureau, Alban Lepailleur J. Med. Chem, 2018, Volume61, Issue8, Page 3551-3564
D0I10.1021/acs.jmedchem.7b01890

Norns

A visual programming environment to implement a pharmacophore mining process

The Pharmacophore Network: A Computational Method for Exploring Structure-Activity Relationships from Jean-Philippe Métivier, Bertrand Cuissart, Ronan Bureau, Alban Lepailleur J. Med. Chem, 2018, Volume61, Issue8, Page 3551-3564 D0I10.1021/acs.jmedchem.7b01890

Norns

A visual programming environment to implement a pharmacophore mining process

 The Pharmacophore Network: A Computational Method for Exploring Structure-Activity Relationships from Jean-Philippe Métivier, Bertrand Cuissart, Ronan Bureau, Alban Lepailleur J. Med. Chem, 2018, Volume61, Issue8, Page 3551-3564
D0I10.1021/acs.jmedchem.7b01890

GREYC/CERMN

Norns: a GUI to express workflows in chemoinformatics 🛛 🌮

- implementation of complex processes by connecting boxes,
- ▶ 60 configurable boxes that include:
 - reading/writing of molecules from/into files,
 - molecular representations,
 - pharcophoric features mining,
 - pharmacophore selection,
 - classifiers

Towards a pharmacophore network

Exploration of Structure-Activity Relationships from a Large Chemical Data Set [?]

Navigation

Relationship: the graph inclusion (being a subgraph of)

Hasse diagram ь

A principal pharmacophore Bcr-Abl

The addition of features on P1 improves its discriminative power.

The pharmacophores and the SAR principle [?]¹

SAR principle

► Two "similar" chemical structures should be associated to a similar behaviour

- Relationship: a graph edit distance
- separation between the pharmacophores associated with active compounds and those associated with inactive ones,
- clustering —> pharmacophores that occurs in molecules with similar structures and biological activities

¹Deciphering a Pharmacophore Network: A Case Study Using BCR-ABL Data, Damien Geslin et al, J. Chem. Inf. Model., 2022

GREYC/CERMN

13 / 13

The pharmacophores and the SAR principle [?]¹

SAR principle

Two "similar" chemical structures should be associated to a similar behaviour.

- Relationship: a graph edit distance
- separation between the pharmacophores associated with active compounds and those associated with inactive ones.
- \blacktriangleright clustering \rightarrow pharmacophores that occurs in molecules with similar structures and biological activities

J. Chem. Inf. Model., 2022

ph4s in Caen

GREYC/CERMN

Perspectives related to GNNs

- screening of a molecular bank to compute a large activity profile
- Iocation/identification of the parts of the graph that are the most important
- (re)definition of the pharmacophoric features