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GNNs separative power

Weisfeiler-lehman hierarchy
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GNNs separative power

our contributions

Contributions

New GNN design framework based on Context Free Grammar (CFG).

Grammatical Graph Neural Network (G2N2) a 3-WL GNN.

3-WL spectral response.
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MATLANG, its link to WL and CFGs

Matlang

In [Brijder et al., 2019] they introduced MATLANG a matrix language.

Matlang

ML (L) is a matrix language with an allowed operation set L = {op1, . . . , opn},
where opi ∈ {⋅,+, T,diag,Tr,1,⊙,×, f}.

Sentence

e(X) ∈ R is a sentence in ML (L) if it consists of any possible consecutive
operations in L, operating on a given matrix X and resulting in a scalar value.

As an example, 1T (X ⊙ diag (1))1 is a sentence in ML ( T,1,⊙, ⋅,diag) that
computes trace of square matrix X.
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MATLANG, its link to WL and CFGs

Graphs equivalence in MATLANG

ML (L) -equivalent for matrices

Two matrices A and B inMm,n (R) are said to be ML (L) -equivalent, denoted by
A ≡ML(L) B, if and only if e(A) = e(B) for all sentences in ML (L).

ML (L) -equivalent for graphs

Two graphs G and H of the same order are said to be ML (L) -equivalent, denoted
by G ≡ML(L) H, if and only if their adjacency matrices are ML (L) -equivalent.
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MATLANG, its link to WL and CFGs

Link between WL and MATLANG

In [Geerts and Reutter, 2021], they proved the following theorems for the sets of
operations L1 = {⋅, T,1,diag} and L3 = {⋅, T,1,diag,⊙}.

1-WL equivalence

Two adjacency matrices are indistinguishable by the 1-WL test if and only if
e(AG) = e(AH) for all e ∈ L1. Hence, all possible sentences in L1 are the same for
1−WL-equivalent adjacency matrices. Thus,

A
G
≡1-WL A

H
⇐⇒ A

G
≡ML(L1)

A
H

3-WL equivalence

Two adjacency matrices are indistinguishable by the 3-WL test if and only if
e(AG) = e(AH) for all e ∈ L3. Hence, all possible sentences in L3 are the same for
3−WL-equivalent adjacency matrices. Thus,

A
G
≡3-WL A

H
⇐⇒ A

G
≡ML(L3)

A
H
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MATLANG, its link to WL and CFGs

Context Free Grammar
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From Context Free Grammar to GNN

A framework to translate a language into GNN

We proposed the following framework to translate a language into a GNN in 3 steps:

Define the exhaustive CFG that generates the language

Reduce the exhaustive CFG

Translate the variables and rules of the reduced CFG into GNN input and model
layer
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From Context Free Grammar to GNN

Our framework applied on ML (L1)

Example of the generation of the word (1)TA1 with ML (L1).
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From Context Free Grammar to GNN

Our framework applied on ML (L1)
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From Context Free Grammar to GNN

Our framework applied on ML (L3)
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From Context Free Grammar to GNN

parallelised rule generation and G2N2
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From Context Free Grammar to GNN

G2N2 a 3-WL GNN

G2N2 architecture :

Theorem (G2N2 in the WL hierarchy)

G2N2 is as expressive as 3-WL.
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3-WL spectral power

3-WL spectral response

Theorem (3-WL spectral response)

3-WL can approximate low-pass, high-pass and band-pass filter in the spectral
domain.

Table: R2 score on spectral filtering node regression problems. Results are median of 10
different runs.

Method Low-pass High-pass Band-pass

CHEBNET 0.9995 0.9901 0.8217
GNNML3 0.9995 0.9909 0.8189
PPGN 0.9991 0.9925 0.1041

G2N2 0.9996 0.9994 0.8206

On the left G2N2’s prediction, on the center the input and on the right, the target
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Experiments on downstream tasks

Regression tasks

Table: Results on QM9 dataset focusing on the best methods. The metric is MAE, the
lower, the better.

Target PPGN G2N2

µ 0.0934 0.0703
α 0.318 0.127
ϵhomo 0.00174 0.00172
ϵlumo 0.0021 0.00153
∆ϵ 0.0029 0.00253

R2 3.78 0.342
ZPVE 0.000399 0.0000951
U0 0.022 0.0169
U 0.0504 0.0162
H 0.0294 0.0176
G 0.024 0.0214
Cv 0.144 0.0429
T / ep 129 s 98 s

PPGN G2N2

0.231 0.102
0.382 0.196
0.00276 0.0021
0.00287 0.00211
0.0029 0.00287
16.07 1.19
0.00064 0.0000151
0.234 0.0502
0.234 0.0503
0.229 0.0503
0.238 0.0504
0.184 0.0707
131 s 57 s
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Experiments on downstream tasks

Classification tasks

Table: Results of G2N2 on TUD dataset compared to the best competitor. The metric is
accuracy, the higher, the better.

Dataset G2N2 rank Best GNN competitor

MUTAG 92.5±5.5 1(1) 92.2±7.5
PTC 72.3±6.3 1(1) 68.2±7.2
Proteins 80.1±3.7 1(1) 77.4±4.9
NCI1 82.8±0.9 5(3) 83.5±2.0
IMDB-B 76.8±2.8 3(2) 77.8±3.3
IMDB-M 54.0±2.9 2(2) 54.3±3.3
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conclusion

Conclusion

General framework to design GNN from language fragment

3-WL GNN resulting from our framework

3-WL spectral response

Perspective

applying our framework on language with other desired expressive power.
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GNOME

Graph NOde Matching for Edit distance(GNOME)
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GNOME

Embedding block

Graph Isomorphism Network (GIN) is used to learn an embedding of the nodes of
each graph by aggregating each node’s neighborhood at each layer:

h
(l+1)
v =MLP (l)

⎛
⎝
(1 + ϵ(l)) .h(l)v + ∑

u∈N(v)

h
(l)
u
⎞
⎠

(1)

Where l is the l-th layer of GIN, N(v) the one-hop neighborhood of node v, ϵ(l) a
learnable parameter and MLP a multi-layer perceptron with two layers.
We then obtain, for L layers of GIN, the final nodes embedding :

Hv =MLP (end) (h(1)v ∣h(2)v ∣...∣h(L−1)v ∣h(L)v ) (2)
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GNOME

Matching Block

To proceed nodes distribution’s matching an LSAP solver is used (injective case of
Wasserstein distance)
By introducing permutation matrix X = (xi,j) we can define LSAP as follow :

LSAP(C̃) =min
X

N

∑
i=1

N

∑
j=1

c̃i,jxi,j

C = (S D
I 0

) (3)

C̃ = (S D̃) (4)
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GNOME

Substitution costs

Let be a graph pair (G,G′) of size (N1,N2). We obtain as defined in (3), two sets
of embedded nodes H,H′.
We can now compute a cost matrix by using the Euclidean distance between nodes
representation.

Ci,j = ∥Hi −H′j∥2 C =
⎛
⎜
⎝

c1,1 ⋯ c1,N2

⋮ ⋱ ⋮
cN1,1

⋯ cN1,N2

⎞
⎟
⎠

Costs of C correspond to GED’s substitutions cost of nodes of G with those of G′.
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GNOME

Deletion (or insertion) costs

We can also use the Euclidean distance to define deletion costs. In this case, the
norm of the embedding vector is used to represent its cost of deletion.

Deletion: D̃ =
⎛
⎜⎜
⎝

d̃1,1 ⋯ d̃1,N1−N2

⋮ ⋱ ⋮
d̃N1,1

⋯ d̃N1,N1−N2

⎞
⎟⎟
⎠
, d̃i,j = ∥Hi∥2 , (5)
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GNOME

Metric properties conservation

We want S to respect the metric properties of GED. S ∶ G × G → R+ satisfying the
following axioms for all graphs x, y, z ∈ G:

1)The distance from a graph to itself is zero: S(x, x) = 0. Holds.
2)Positivity: If x ≠ y, then S(x, y) > 0. Not respected.
3)Symmetry: S(x, y) = S(y, x). Holds.
4)The triangle inequality: S(x, z) ≤ S(x, y) + S(y, z). Holds.

All those properties are respected during learning except for the Positivity due to
the Graph isomorphism problem which is NP-Hard. It came from the expressiveness
bound of GIN (first-order Weisfeiler-Lehman test).
Therefore S(G,G′) is a pseudo-metric. Indeed it exists G ≠ G′ for which
S(G,G′) = 0.
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GNOME

Triangular inequality for LSAP

Let X , Y and Z be three graphs. Without loss of generality let’s assume
∣X ∣ > ∣Y∣ > ∣Z∣. There exist two permutation matrices P ∗

X ,Y and P ∗
Y,Z solutions of

LSAP (C̃
X ,Y) and LSAP (C̃

Y,Z).
Both matrices can be decomposed as:

P ∗
X ,Y = (SX ,Y D̃

X ,Y) , P ∗
Y,Z = (SY,Z D̃

Y,Z) .

Let’s construct P̃ , the following permutation matrix

P̃ = (S
X ,YSY,Z D̃

X ,Y ∣∣SX ,YD̃Y,Z)

We have by definition and construction that

LSAP (C̃
X ,Z) ⩽

∣X ∣

∑
i=1

∣Z∣

∑
j=1

(C̃
X ,Z)i,j (P̃ )i,j ⩽ LSAP (C̃

X ,Y) + LSAP (C̃
Y,Z) .
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