Grammatical Graph Neural Networks and more

Jason Piquenot

Supervisors : Sébastien Adam Romain Raveaux Co-supervisors : Maxime Bérar Pierre Héroux Jean-Yves Ramel

$8^{\text {th }}$ december 2023
(1) GNNs separative power
(2) MATLANG, its link to WL and CFGs
(3) From Context Free Grammar to GNN
(4) 3-WL spectral power
(5) Experiments on downstream tasks
(6) conclusion
(7) GNOME
(8) bibliography
(1) GNNs separative powerMATLANG, its link to WL and CFGsFrom Context Free Grammar to GNN3-WL spectral powerExperiments on downstream tasksconclusionGNOMEbibliography

GNNs separative power

Algorithm k-WL $(k \geq 2)$
Input: $G=\left(V, E, X_{V}\right)$

1. $\quad c_{\vec{v}}^{0} \leftarrow \operatorname{hash}(G[\vec{v}])$ for all $\vec{v} \in V^{k}$
2. repeat
3. $\quad c_{\vec{v}, i}^{\ell} \leftarrow\left\{c_{w}^{\ell-1}: w \in \mathcal{N}_{i}(\vec{v})\right\} \forall v \in V^{k}, i \in[k]$
4. $\quad c_{\vec{v}}^{\ell} \leftarrow \operatorname{hash}\left(c_{\vec{v}}^{\ell-1}, c_{\vec{v}, 1}^{\ell}, \ldots c_{\vec{v}, k}^{\ell}\right) \forall \vec{v} \in V^{k}$
5. until $\left(c_{\vec{v}}^{\ell}\right)_{\vec{v} \in V^{k}}==\left(c_{\vec{v}}^{\ell-1}\right)_{\vec{v} \in V^{k}}$
6. return $\left\{c_{\vec{v}}^{\ell}: \vec{v} \in V^{k}\right\}$

Contributions

New GNN design framework based on Context Free Grammar (CFG).

Grammatical Graph Neural Network $\left(\mathrm{G}^{2} \mathrm{~N}^{2}\right)$ a 3-WL GNN.

3-WL spectral response.
(1) GNNs separative power
(2) MATLANG, its link to WL and CFGsFrom Context Free Grammar to GNN3-WL spectral powerExperiments on downstream tasksconclusionGNOMEbibliography

In [Brijder et al., 2019] they introduced MATLANG a matrix language.

Matlang

$\mathrm{ML}(\mathcal{L})$ is a matrix language with an allowed operation set $\mathcal{L}=\left\{o p_{1}, \ldots, o p_{n}\right\}$, where $o p_{i} \in\left\{\cdot,+, \mathbf{T}^{\mathbf{T}}\right.$, diag, $\left.\operatorname{Tr}, 1, \odot, \times, f\right\}$.

Sentence

$e(X) \in \mathbb{R}$ is a sentence in $\operatorname{ML}(\mathcal{L})$ if it consists of any possible consecutive operations in \mathcal{L}, operating on a given matrix X and resulting in a scalar value.

As an example, $1^{\mathbf{T}}(X \odot \operatorname{diag}(1)) 1$ is a sentence in ML $\left({ }^{\mathbf{T}}, 1, \odot, \cdot, \operatorname{diag}\right)$ that computes trace of square matrix X.

ML (\mathcal{L})-equivalent for matrices

Two matrices A and B in $\mathcal{M}_{m, n}(\mathbb{R})$ are said to be $\operatorname{ML}(\mathcal{L})$-equivalent, denoted by $A \equiv_{\mathrm{ML}(\mathcal{L})} B$, if and only if $e(A)=e(B)$ for all sentences in $\operatorname{ML}(\mathcal{L})$.

ML (\mathcal{L})-equivalent for graphs
Two graphs \mathcal{G} and \mathcal{H} of the same order are said to be ML (\mathcal{L})-equivalent, denoted by $\mathcal{G} \equiv_{\mathrm{ML}(\mathcal{L})} \mathcal{H}$, if and only if their adjacency matrices are $\mathrm{ML}(\mathcal{L})$-equivalent.

In [Geerts and Reutter, 2021], they proved the following theorems for the sets of operations $\mathcal{L}_{1}=\left\{\cdot,{ }^{\mathbf{T}}, 1, \operatorname{diag}\right\}$ and $\mathcal{L}_{3}=\left\{\cdot,{ }^{\mathbf{T}}, 1, \operatorname{diag}, \odot\right\}$.

1-WL equivalence

Two adjacency matrices are indistinguishable by the 1-WL test if and only if $e\left(A_{G}\right)=e\left(A_{H}\right)$ for all $e \in \mathcal{L}_{1}$. Hence, all possible sentences in \mathcal{L}_{1} are the same for 1 -WL-equivalent adjacency matrices. Thus,

$$
A_{\mathcal{G}} \equiv_{1-\mathrm{WL}} A_{\mathcal{H}} \Longleftrightarrow A_{\mathcal{G}} \equiv_{\mathrm{ML}\left(\mathcal{L}_{1}\right)} A_{\mathcal{H}}
$$

3-WL equivalence

Two adjacency matrices are indistinguishable by the 3-WL test if and only if $e\left(A_{G}\right)=e\left(A_{H}\right)$ for all $e \in \mathcal{L}_{3}$. Hence, all possible sentences in \mathcal{L}_{3} are the same for 3 -WL-equivalent adjacency matrices. Thus,

$$
A_{\mathcal{G}} \equiv_{3-\mathrm{WL}} A_{\mathcal{H}} \Longleftrightarrow A_{\mathcal{G}} \equiv_{\mathrm{ML}\left(\mathcal{L}_{3}\right)} A_{\mathcal{H}}
$$

L
UNIVERSITÉ DE ROUEN
(1) GNNs separative powerMATLANG, its link to WL and CFGsFrom Context Free Grammar to GNN3-WL spectral powerExperiments on downstream tasksconclusionGNOMEbibliography

From Context Free Grammar to GNN
A framework to translate a language into GNN

We proposed the following framework to translate a language into a GNN in 3 steps:
Define the exhaustive CFG that generates the language

Reduce the exhaustive CFG

Translate the variables and rules of the reduced CFG into GNN input and model layer

From Context Free Grammar to GNN

Our framework applied on $\operatorname{ML}\left(\mathcal{L}_{1}\right)$

Example of the generation of the word (1) ${ }^{\mathbf{T}} A 1$ with ML $\left(\mathcal{L}_{1}\right)$.
$\left.\xrightarrow[S \rightarrow V_{r} V_{c}]{ } V_{r} V_{c} \xrightarrow[V_{r} \rightarrow\left(V_{c}\right)^{\mathrm{T}}]{ }\left(V_{c}\right)^{\mathrm{T}} V_{c} \xrightarrow[V_{c} \rightarrow M V_{c}]{ }\left(V_{c}\right)^{\mathrm{T}} M V_{c} \xrightarrow[V_{c} \rightarrow \mathbb{1}]{ }\left(V_{c}\right)^{\mathrm{T}} M \mathbb{1} \xrightarrow\left[V_{c} \rightarrow \mathbb{1}^{(\mathbb{1}}\right)^{\mathrm{T}} M \mathbb{1}\right]{M \rightarrow A}\left(\mathbb{C}^{\mathrm{T}} A \mathbb{1}\right.$

From Context Free Grammar to GNN

Our framework applied on $\operatorname{ML}\left(\mathcal{L}_{1}\right)$

From Context Free Grammar to GNN

Our framework applied on $\operatorname{ML}\left(\mathcal{L}_{3}\right)$

QUNIVERSITÉ DE ROUEN

$$
\mathrm{G}^{2} \mathrm{~N}^{2} \text { architecture : }
$$

Theorem ($\mathrm{G}^{2} \mathrm{~N}^{2}$ in the WL hierarchy)
$G^{2} N^{2}$ is as expressive as $3-W L$.

GNNs separative powerMATLANG, its link to WL and CFGsFrom Context Free Grammar to GNN3-WL spectral powerExperiments on downstream tasksconclusionGNOMEbibliography

3-WL spectral response

Theorem (3-WL spectral response)

3-WL can approximate low-pass, high-pass and band-pass filter in the spectral domain.

Table: R^{2} score on spectral filtering node regression problems. Results are median of 10 different runs.

Method	Low-pass	High-pass	Band-pass
CHEBNET	0.9995	0.9901	0.8217
GNNML3	0.9995	0.9909	0.8189
PPGN	0.9991	$\mathbf{0 . 9 9 2 5}$	0.1041
$\mathrm{G}^{2} \mathrm{~N}^{2}$	$\mathbf{0 . 9 9 9 6}$	$\mathbf{0 . 9 9 9 4}$	0.8206

On the left $\mathrm{G}^{2} \mathrm{~N}^{2}$, s prediction, on the center the input and on the right, the target

UUNIVERSITÉ DE ROUEN

GNNs separative powerMATLANG, its link to WL and CFGsFrom Context Free Grammar to GNN3-WL spectral powerExperiments on downstream tasksconclusionGNOMEbibliography

Table: Results on QM9 dataset focusing on the best methods. The metric is MAE, the lower, the better.

Target	PPGN	$\mathrm{G}^{2} \mathrm{~N}^{2}$
μ	0.0934	$\mathbf{0 . 0 7 0 3}$
α	0.318	$\mathbf{0 . 1 2 7}$
$\epsilon_{\text {homo }}$	0.00174	$\mathbf{0 . 0 0 1 7 2}$
$\epsilon_{\text {lumo }}$	0.0021	$\mathbf{0 . 0 0 1 5 3}$
$\Delta \epsilon$	0.0029	$\mathbf{0 . 0 0 2 5 3}$
R^{2}	3.78	$\mathbf{0 . 3 4 2}$
ZPVE $^{U_{0}}$	0.000399	$\mathbf{0 . 0 0 0 0 9 5 1}$
U	0.022	$\mathbf{0 . 0 1 6 9}$
H	0.0504	$\mathbf{0 . 0 1 6 2}$
G	0.0294	$\mathbf{0 . 0 1 7 6}$
C_{v}	0.024	$\mathbf{0 . 0 2 1 4}$
$\mathrm{~T} /$ ep	0.144	$\mathbf{0 . 0 4 2 9}$

PPGN	$\mathrm{G}^{2} \mathrm{~N}^{2}$
0.231	$\mathbf{0 . 1 0 2}$
0.382	$\mathbf{0 . 1 9 6}$
0.00276	$\mathbf{0 . 0 0 2 1}$
0.00287	$\mathbf{0 . 0 0 2 1 1}$
0.0029	$\mathbf{0 . 0 0 2 8 7}$
16.07	$\mathbf{1 . 1 9}$
0.00064	$\mathbf{0 . 0 0 0 0 1 5 1}$
0.234	$\mathbf{0 . 0 5 0 2}$
0.234	$\mathbf{0 . 0 5 0 3}$
0.229	$\mathbf{0 . 0 5 0 3}$
0.238	$\mathbf{0 . 0 5 0 4}$
0.184	$\mathbf{0 . 0 7 0 7}$
131 s	57 s

QUNIVERSITÉ

Table: Results of $\mathrm{G}^{2} \mathrm{~N}^{2}$ on TUD dataset compared to the best competitor. The metric is accuracy, the higher, the better.

Dataset	$\mathrm{G}^{2} \mathrm{~N}^{2}$	rank	Best GNN competitor
MUTAG	92.5 ± 5.5	$1(1)$	92.2 ± 7.5
PTC	72.3 ± 6.3	$1(1)$	68.2 ± 7.2
Proteins	80.1 ± 3.7	$1(1)$	77.4 ± 4.9
NCI1	82.8 ± 0.9	$5(3)$	83.5 ± 2.0
IMDB-B	76.8 ± 2.8	$3(2)$	77.8 ± 3.3
IMDB-M	54.0 ± 2.9	$2(2)$	54.3 ± 3.3

1) GNNs separative powerMATLANG, its link to WL and CFGsFrom Context Free Grammar to GNN3-WL spectral powerExperiments on downstream tasksconclusionGNOMEbibliography

General framework to design GNN from language fragment

3-WL GNN resulting from our framework

3-WL spectral response

Perspective
applying our framework on language with other desired expressive power.

(1)

CNNs separative powerMATLANG, its link to WL and CFGsFrom Context Free Grammar to GNN3-WL spectral powerExperiments on downstream tasksconclusion
(3) GNOMEbibliography
Lumusix

Graph NOde Matching for Edit distance(GNOME)

Graph Isomorphism Network (GIN) is used to learn an embedding of the nodes of each graph by aggregating each node's neighborhood at each layer:

$$
\begin{equation*}
\mathbf{h}_{v}^{(l+1)}=M L P^{(l)}\left(\left(1+\epsilon^{(l)}\right) \cdot \mathbf{h}_{v}^{(l)}+\sum_{u \in \mathcal{N}(v)} \mathbf{h}_{u}^{(l)}\right) \tag{1}
\end{equation*}
$$

Where l is the l-th layer of GIN, $\mathcal{N}(v)$ the one-hop neighborhood of node $v, \epsilon^{(l)}$ a learnable parameter and MLP a multi-layer perceptron with two layers. We then obtain, for L layers of GIN, the final nodes embedding :

$$
\begin{equation*}
\mathbf{H}_{v}=M L P^{(e n d)}\left(\mathbf{h}_{v}^{(1)}\left|\mathbf{h}_{v}^{(2)}\right| \ldots\left|\mathbf{h}_{v}^{(L-1)}\right| \mathbf{h}_{v}^{(L)}\right) \tag{2}
\end{equation*}
$$

RUNIVERSTTE DE ROUEN

Matching Block

To proceed nodes distribution's matching an LSAP solver is used (injective case of Wasserstein distance)
By introducing permutation matrix $\mathbf{X}=\left(x_{i, j}\right)$ we can define LSAP as follow :

$$
\begin{aligned}
\mathbf{L S A P}(\tilde{\mathbf{C}}) & =\min _{\mathbf{X}} \sum_{i=1}^{N} \sum_{j=1}^{N} \tilde{c}_{i, j} x_{i, j} \\
\mathbf{C} & =\left(\begin{array}{cc}
\mathbf{S} & \mathbf{D} \\
\mathbf{I} & 0
\end{array}\right) \\
\tilde{\mathbf{C}} & =\left(\begin{array}{ll}
\mathbf{S} & \tilde{\mathbf{D}}
\end{array}\right)
\end{aligned}
$$

(3)

Let be a graph pair $\left(G, G^{\prime}\right)$ of size $\left(N_{1}, N_{2}\right)$. We obtain as defined in (3), two sets of embedded nodes $\mathbf{H}, \mathbf{H}^{\prime}$.
We can now compute a cost matrix by using the Euclidean distance between nodes representation.

$$
\mathbf{C}_{i, j}=\left\|\mathbf{H}_{i}-\mathbf{H}_{j}^{\prime}\right\|_{2} \quad \mathbf{C}=\left(\begin{array}{ccc}
\mathbf{c}_{1,1} & \cdots & \mathbf{c}_{1, N_{2}} \\
\vdots & \ddots & \vdots \\
\mathbf{c}_{N_{1}, 1} & \cdots & \mathbf{c}_{N_{1}, N_{2}}
\end{array}\right)
$$

Costs of \mathbf{C} correspond to GED's substitutions cost of nodes of G with those of G^{\prime}.

We can also use the Euclidean distance to define deletion costs. In this case, the norm of the embedding vector is used to represent its cost of deletion.

$$
\text { Deletion: } \tilde{\mathbf{D}}=\left(\begin{array}{ccc}
\tilde{d}_{1,1} & \cdots & \tilde{d}_{1, N_{1}-N_{2}} \tag{5}\\
\vdots & \ddots & \vdots \\
\tilde{d}_{N_{1}, 1} & \cdots & \tilde{d}_{N_{1}, N_{1}-N_{2}}
\end{array}\right), \tilde{d}_{i, j}=\left\|\mathbf{H}_{i}\right\|_{2},
$$

QUNIVERSTIE DE ROUEN

We want \mathbf{S} to respect the metric properties of GED. $\mathbf{S}: \mathcal{G} \times \mathcal{G} \rightarrow \mathbb{R}^{+}$satisfying the following axioms for all graphs $x, y, z \in \mathcal{G}$:
1)The distance from a graph to itself is zero: $\quad \mathbf{S}(x, x)=0$. Holds.
2)Positivity: If $x \neq y$, then $\mathbf{S}(x, y)>0$. Not respected.
3)Symmetry: $\quad \mathbf{S}(x, y)=\mathbf{S}(y, x)$. Holds.
4)The triangle inequality: $\mathbf{S}(x, z) \leq \mathbf{S}(x, y)+\mathbf{S}(y, z)$. Holds.

All those properties are respected during learning except for the Positivity due to the Graph isomorphism problem which is NP-Hard. It came from the expressiveness bound of GIN (first-order Weisfeiler-Lehman test).
Therefore $\mathbf{S}\left(G, G^{\prime}\right)$ is a pseudo-metric. Indeed it exists $G \neq G^{\prime}$ for which $\mathbf{S}\left(G, G^{\prime}\right)=0$.

Triangular inequality for LSAP

Let \mathcal{X}, \mathcal{Y} and \mathcal{Z} be three graphs. Without loss of generality let's assume $|\mathcal{X}|>|\mathcal{Y}|>|\mathcal{Z}|$. There exist two permutation matrices $P_{\mathcal{X}, \mathcal{Y}}^{*}$ and $P_{\mathcal{Y}, \mathcal{Z}}^{*}$ solutions of $\operatorname{LSAP}\left(\tilde{C}_{\mathcal{X}, \mathcal{Y}}\right)$ and $\operatorname{LSAP}\left(\tilde{C}_{\mathcal{Y}, \mathcal{Z}}\right)$.
Both matrices can be decomposed as:

$$
P_{\mathcal{X}, \mathcal{Y}}^{*}=\left(\begin{array}{ll}
S_{\mathcal{X}, \mathcal{Y}} & \tilde{D}_{\mathcal{X}, \mathcal{Y}}
\end{array}\right), \quad P_{\mathcal{Y}, \mathcal{Z}}^{*}=\left(\begin{array}{ll}
S_{\mathcal{Y}, \mathcal{Z}} & \tilde{D}_{\mathcal{Y}, \mathcal{Z}}
\end{array}\right) .
$$

Let's construct \tilde{P}, the following permutation matrix

$$
\tilde{P}=\left(S_{\mathcal{X}, \mathcal{Y}} S_{\mathcal{Y}, \mathcal{Z}} \quad \tilde{D}_{\mathcal{X}, \mathcal{Y}} \| S_{\mathcal{X}, \mathcal{Y}} \tilde{D}_{\mathcal{Y}, \mathcal{Z}}\right)
$$

We have by definition and construction that

$$
\operatorname{LSAP}\left(\tilde{C}_{\mathcal{X}, \mathcal{Z}}\right) \leqslant \sum_{i=1}^{|\mathcal{X}|} \sum_{j=1}^{|\mathcal{Z}|}\left(\tilde{C}_{\mathcal{X}, \mathcal{Z}}\right)_{i, j}(\tilde{P})_{i, j} \leqslant \operatorname{LSAP}\left(\tilde{C}_{\mathcal{X}, \mathcal{Y}}\right)+\operatorname{LSAP}\left(\tilde{C}_{\mathcal{Y}, \mathcal{Z}}\right)
$$

GNNs separative powerMATLANG, its link to WL and CFGsFrom Context Free Grammar to GNN3-WL spectral powerExperiments on downstream tasksconclusionGNOMEbibliography

Brijder, R., Geerts, F., den Bussche, J. V., and Weerwag, T. (2019).
On the expressive power of query languages for matrices.
ACM Trans. Database Syst., 44(4):15:1-15:31.
Geerts, F. and Reutter, J. L. (2021).
Expressiveness and approximation properties of graph neural networks.
In International Conference on Learning Representations.
Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2019).
How powerful are graph neural networks?
In International Conference on Learning Representations.

Thank you for your attention.
Our paper is available here.
Grammatical Graph Neural Network https://arxiv.org/abs/2303.01590

L

