
Impact of pooling methods on over-squashing and over-smoothing

Stevan Stanovic

Stevan Stanovic () Impact of pooling on over-squashing and over-smoothing 1 / 29



Table of contents

1 Introduction

2 Theoretical result for pooling

3 Experiment on over-squashing

4 Experiment on over-smoothing

5 Conclusion

Stevan Stanovic () Impact of pooling on over-squashing and over-smoothing 2 / 29



Sommaire

1 Introduction

2 Theoretical result for pooling

3 Experiment on over-squashing

4 Experiment on over-smoothing

5 Conclusion

Stevan Stanovic () Impact of pooling on over-squashing and over-smoothing 3 / 29



Over-squashing Issue

Over-squashing is characterized by the fact that GNNs are almost unable to transfer
information between distant nodes.

…

Figure: Red and blue nodes are the more distant nodes in the graph. Transferring information between
them is more challenging than another pair of nodes.
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Why is difficult to transfer information ?

It exists two main reasons:

Propagation obstruction due to access/commute time [1]:

Access time: number of iterations needed to transfer information between two nodes
Commute time: number of iterations needed to transfer information and come-back between
two nodes
Obstruction: information from nearest nodes is higher than distant nodes

Bottleneck effect: as the number of layers increases, the number of nodes in each node’s
receptive field grows exponentially and messages that are propagated from distant nodes
are distorted [2, 3]. Particularly if it exists few edges between dense regions in the graph.
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Illustration of a graph with a bottleneck

Figure: Information transiting through the red edge is concerned by over-squashing.
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Commute time and existing solution to mitigate over-squashing

Figure: Example of rewiring methods with commute time measures on edges.
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Over-smoothing Issue

Over-smoothing occurs when the number of layers, e.g. the depth, in a GNN increases. By
iteratively combining neighbors node features together, all nodes representation in a graph are
computed using the same information.
For a GCN, node features tend towards a common representation described by a combination
of the square roots of the degrees of the graph [4, 5, 6].
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Generalisation to symmetric normalized convolution

We consider the following convolution : Xn+1 = CXn = Cn+1X0. Let note
−1 ≤ λ1 ≤ ... ≤ λm = 1 be the m eigenvalues of C and v1, ..., vm the corresponding
eigenvectors. Assuming that X0 = α1v1 + ...+ αmvm and using the power iteration algorithm,
we know that:

∃p | ∀k ≥ p : ∥C kX0 − αmλ
k
mvm∥ < γ(λm−1

λm
)k where γ is a scalar.

Note that vm is equal to D
1
21.
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Dirichlet Energy

Over-smoothing can be efficiently characterized by the mean Dirichlet energy defined for graph
G(l) as E (X (l)) = Trace((X (l))TLX (l))/|G(l)| where L is the Laplacian associated with the
convolution operator. By utilizing the convolution described in [7], the mean Dirichlet energy
can be written as:

E (X(l)) = 1
|G(l)|

∑
i∈V(l)

∑
j∈N (l)

i

A
(l)
ij ∥ X

(l)
i√

di+1
− X

(l)
j√
dj+1

∥22

where N (l)
i and di are respectively the neighborhood and the degree of node i .

Stevan Stanovic () Impact of pooling on over-squashing and over-smoothing 10 / 29



Sommaire

1 Introduction

2 Theoretical result for pooling

3 Experiment on over-squashing

4 Experiment on over-smoothing

5 Conclusion

Stevan Stanovic () Impact of pooling on over-squashing and over-smoothing 11 / 29



Definitions

Given a vertex v surviving at layer l we denote by RW l(v) the Reduction Window of v at level
l .
The receptive field of v at level l RF l(v) corresponds to the set of vertices defined at the base
level graph which are merged onto v at level l . More formally, the receptive field at level l is
defined recursively :

Definition

Let G(l), . . . ,G(1) = (V 1,E 1) denote a sequence of reduced graphs. The receptive fields at
level l are defined for any vertex v ∈ V l as:

RF l(v) =
⋃

u∈RW l(v)

RF l−1(u) with RF 1(u) = RW 1(u)
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Application to Maximal Independent Sets

Reduction windows produced by these strategies satisfy the following equations at any layer l
and for any vertex w ∈ V l :{

RW l(w) = {w} or
RW l(w) = {w , v1, . . . , vn} with ∀i ∈ {1, . . . , n} dGl−1

(w , vi ) = 1
(1)

where dGl−1
(., .) is the distance within the graph G(l−1) defined at layer l − 1.
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Theoretical result on over-squashing

For a convolution, we need a linear relation to intersect features from two nodes:

m =
dG0 (u,v)

2

Using a decimation scheme satisfying equation 1 we have a log relation:

m ≈ log(dG0(u, v))
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Theoretical result on over-smoothing

We prove that:

1 If each vertex belongs to only one reduction window {RF l(v)}v∈V l forms partition of V 0.

⇒ applying just pooling layers like MIVSPool prevent to have over-smoothing because
the set of receptive fields forms a partition of the initial vertex set

2 Let a GNN built by successive applications of GNN+MIVS-topk. At any level two non
adjacent vertices are associated to disjoint receptive fields

⇒ applying an alternation of GCN and Top-k methods conditioned by a MIVS
(MIVStop−k) also prevent over-smoothing.
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Experiment

We study the number of layers needed to have the intersection of the two nodes for three
different architectures: only convolutions layers (GCN), only pooling layers and an alternation
of convolution and pooling.

…
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Number of layers necessary to cross receptive fields with GCN
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Number of layers necessary to cross receptive fields without GCN
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Average amount of information transmitted during the crossing
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Experiment

We study the variation of the Dirichlet energy according to the number of receptive field. We
compare the Dirichlet energy for different methods: only convolutions layers (GCN), only
pooling layers and an alternation of convolution and pooling.

Stevan Stanovic () Impact of pooling on over-squashing and over-smoothing 22 / 29



Evolution of Dirichlet energy for all methods
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Evolution of Dirichlet energy for GCN and pooling
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Evolution of Dirichlet energy for GCN and alternation methods
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For GCN and alternation of GCN and 2 pooling
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For GCN and alternation of GCN and 4 pooling
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Conclusion

1 Accumulating normalized convolution leads to converge to a linear combination of the
square root of degrees

2 Applying pooling help to intersect faster features

3 Applying our pooling strategy methods prevents to have over-smoothing
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Illustration of the Definition of the Receptive Field

Figure: Connection between receptive fields in the base level graph. Note the two edges between
RF l−1(vr ) and RF l−1(w) and between RF l−1(w) and RF l−1(vs).
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Theoretical results on over-squashing

Using Equation ??, we can deduce a lower bound for the number of iterations needed to
cluster two nodes in the same Receptive Field:

dG0(u, v) ≤ 2 ∗ 3m − 1

⇒ m ≥ log3

(
dG0 (i ,j)+1

2

)
(2)
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Theoretical results on over-squashing

Supposing the existence of a constant γ > 1 such that for any level p and any couple of
surviving vertices (x , y) we have:

dGp−1(x , y) ≥ γdGp(x , y)

We thus have:

dGm−1(i , j) = 1 ≤
(
1

γ

)m−1

dG0(i , j) ⇒ γm−1 ≤ dG0]
(i , j)

We thus can deduce an upper bound for the number of iterations needed to cluster two nodes
in the same Receptive Field:

m ≤ log(dG0(i , j))

log(γ)
+ 1 (2)
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Theoretical results on over-squashing

Combining Equations 2 and ??, we have:

log3

(
dG0(i , j) + 1

2

)
≤ m ≤ log(dG0(i , j))

log(γ)
+ 1 (2)
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Towards sparse hierarchical graph classifiers.
arXiv preprint arXiv:1811.01287, 2018.

Boris Knyazev, Graham W Taylor, and Mohamed Amer.
Understanding attention and generalization in graph neural networks.
Advances in neural information processing systems, 32, 2019.

Stevan Stanovic () Impact of pooling on over-squashing and over-smoothing 8 / 20



References VII
Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure
Leskovec.
Hierarchical graph representation learning with differentiable pooling.
Advances in neural information processing systems, 31:4805–4815, 2018.

Amirhossein Nouranizadeh, Mohammadjavad Matinkia, Mohammad Rahmati, and Reza
Safabakhsh.
Maximum entropy weighted independent set pooling for graph neural networks.
ArXiv, abs/2107.01410, 2021.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun.
Spectral networks and locally connected networks on graphs.
arXiv preprint arXiv:1312.6203, 2013.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen.
An end-to-end deep learning architecture for graph classification.
Proceedings of the AAAI Conference on Artificial Intelligence, 32(1):4438–4445, 2018.

Stevan Stanovic () Impact of pooling on over-squashing and over-smoothing 9 / 20



References VIII

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel.
Gated graph sequence neural networks.
arXiv preprint arXiv:1511.05493, 2015.

Oriol Vinyals, Samy Bengio, and Manjunath Kudlur.
Order matters: Sequence to sequence for sets.
arXiv preprint arXiv:1511.06391, 2015.

Luc Brun and Walter Kropatsch.
Hierarchical graph encodings.
Image processing and analysis with graphs: theory and practice, 2012.

Peter Meer.
Stochastic image pyramids.
Computer Vision, Graphics, and Image Processing, 45(3):269–294, 1989.

Stevan Stanovic () Impact of pooling on over-squashing and over-smoothing 10 / 20



References IX

Paul D Dobson and Andrew J Doig.
Distinguishing enzyme structures from non-enzymes without alignments.
Journal of molecular biology, 330(4):771–783, 2003.

Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vishwanathan, Alex J
Smola, and Hans-Peter Kriegel.
Protein function prediction via graph kernels.
Bioinformatics, 21(suppl 1):47–56, 2005.

Nikil Wale, Ian A Watson, and George Karypis.
Comparison of descriptor spaces for chemical compound retrieval and classification.
Knowledge and Information Systems, 14(3):347–375, 2008.

Jean-Michel Jolion and Annick Montanvert.
The adaptive pyramid: a framework for 2d image analysis.
CVGIP: Image Understanding, 55(3):339–348, 1992.

Stevan Stanovic () Impact of pooling on over-squashing and over-smoothing 11 / 20



References X
Diego Mesquita, Amauri Souza, and Samuel Kaski.
Rethinking pooling in graph neural networks.
Advances in Neural Information Processing Systems, 33:2220–2231, 2020.

Frederik Diehl, Thomas Brunner, Michael Truong Le, and Alois Knoll.
Towards graph pooling by edge contraction.
In ICML 2019 workshop on learning and reasoning with graph-structured data, 2019.

Stevan Stanovic, Benoit Gaüzère, and Luc Brun.
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