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Joint work with Michèle Sebag1, Kento Uemura2, Akito Fujii2,
Shuang Chang2, Yoseke Koyanagi2, and Koji Maruhashi2

1INRIA TAU team, LISN, Université Paris-Saclay
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Causality in A Few Examples

Image classification: Physical
world

Background Foreground

Label

Biomedical sciences:

(Huynh-Thu and Sanguinetti, 2018)

Applications:

▶ Cell state engineering

▶ Drug discovery

Objective of this talk: Causal Structural Model ← Causal Structure Learning

3 / 26



Causal Structure Learning
Definition (linear causal model): Xi =

∑d
j=1 BjiXj + ϵi for all i = 1, . . . , d .

B: weighted adjacency matrix of a directed acyclic graph (DAG) G
ϵi : noise variable, ϵi ⊥⊥ Xj for all j ∈ PaB(i) := {k ∈ [d ] : Bki ̸= 0}

(e.g., Peters et al. (2017))

X1 = ϵ1

X2 = B12X1 + ϵ2

X3 = B13X1 + ϵ3

X4 = ϵ4

X5 = B35X3 + B45X4 + ϵ5

(Kalainathan et al., 2022)
Remarks:
▶ Markov property: P(X1, . . . ,Xd) = Πd

i=1P(Xi |PaB(i)).
▶ Acyclic and sparse: B is also a sparse matrix in most applications

Problem statement: Given samples X of (X1, . . . ,Xd), learn a DAG matrix B that best fits X .
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Causal Structure Learning: Related Work

Discrete methods: maximum likelihood within the set of DAGs:
▶ Acyclicity is a complex combinatorial constraint (NP-hardness (Chickering, 1996)).
▶ Minimize f (B) = − log p(B;X ) by enumerating different DAGs ⇝ combinatorial problem
▶ Learning the cofficients for the nonzeros of B ⇝ continuous optimization

GES algorithm (Chickering, 2002): greedy search to maximize the Bayesian information criterion (BIC)

S(G;X ) = log p(X|G, θ̂)− d

2
log(n).
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Causal Structure Learning: Related Work

Discrete methods: maximum likelihood within the set of DAGs:
▶ Acyclicity is a complex combinatorial constraint (NP-hardness (Chickering, 1996)).
▶ Minimize f (B) = − log p(B;X ) by enumerating different DAGs ⇝ combinatorial problem
▶ Learning the cofficients for the nonzeros of B ⇝ continuous optimization

Continuous optimization:

Theorem (Zheng et al., 2018): The graph of B ∈ Rd×d is a DAG if and only if

h(B) := tr(exp(B ⊙ B))− d = 0.

Non-combinatorial Optimization NOTEARS (Zheng et al., 2018)

min
B∈Rd×d

f (B) + λ∥B∥ℓ1 ⇔ min
B∈Rd×d

f (B) + λ∥B∥ℓ1

s.t. tr(exp(B ⊙ B))− d = 0 s.t. B ∈ DAG(d)

▶ h(B) continuous and differentiable

▶ Cost: function evaluation of B → tr(exp(B ⊙ B)) and its gradients ⇝ O(d3)

▶ Augmented Lagrangian method . . . Nonconvex nonsmooth problem
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Continuous Optimization Methods

Theorem (Zheng et al., 2018): The graph of B ∈ Rd×d is a DAG if and only if

h(B) := tr(exp(B ⊙ B))− d = 0.

Proof (sketch): For B ∈ {0, 1}d×d and any k ≥ 1,

tr(Bk) = amount of k-cycles.

Total amount of all cycles:

tr(exp(B)) = tr
(
I +

∑
k≥1

1

k!
Bk

)
= d +

∑
k≥1

1

k!
tr(Bk ).

Trick to generalize B to weighted adjacency B: the Hadamard product where (B ⊙ B)ij = B2
ij . □

Zheng et al. (2018): DAGs with NOTEARS: Continuous optimization for structure learning. Advances in Neural Information

Processing Systems, volume 31.
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Continuous Optimization Methods

Theorem (Zheng et al., 2018): The graph of B ∈ Rd×d is a DAG if and only if

h(B) := tr(exp(B ⊙ B))− d = 0.

Landscape of h(B) near C =

(
0 1

2
1
2
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)
, in two different subspaces of R2×2:
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Continuous Optimization Methods

Non-combinatorial Optimization NOTEARS (Zheng et al., 2018)

min
B∈Rd×d

f (B) + λ∥B∥ℓ1 ⇔ min
B∈Rd×d

f (B) + λ∥B∥ℓ1

s.t. tr(exp(B ⊙ B))− d = 0 s.t. B ∈ DAG(d)

The continuous opt. approach may induce heavy bias in the estimated causal order!
(Var-sortability bias (Reisach et al., 2021))

X1 = ϵ1

X4 = ϵ4

X2 = B12X1 + ϵ2

X3 = B13X1 + ϵ3

X5 = B35X3 + B45X4 + ϵ5

▶ Homogeneous data (var(ϵi ) equal):
Order of {var(Xi )}i=1,...,d consistent with causal order

▶ Heteorgeneous data (var(ϵi ) non-equal):
Order of {var(Xi )}i=1,...,d no longer consistent ⇝ bias

through the gradient ∇f (B)
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Challenges in Causal Structure Learning

For continuous optimization methods:

▶ Nonconvexity

▶ Heavy bias on heterogeneous data

For discrete & graphical methods:

▶ Acyclicity is a complex combinatorial constraint (NP-hardness (Chickering, 1996)).

▶ The set of DAGs is huge!

The size of DAG(d) := {B ∈ {0, 1}d×d : G(B) is a DAG} grows as

|DAG(d)| ≈ d!2d
2/2.
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Divide-and-Conquer in Three Phases
DCILP (Dong et al., 2025): Distributed causal discovery using ILP

1. Phase 1: divide X = (X1, . . . ,Xd) into different subsets S1,S2, . . .

2. Phase 2: learn subgraph from data restricted to Si separately

3. Phase 3: aggregate subgraphs

(a)
(b)

(c) B̂(i) (d) B

How it differs with the related work (Gao et al., 2017; Gu and Zhou, 2020; Mokhtarian et al., 2021):
▶ Phase 2: parallel instead of sequential
▶ Phase 3: integer programming-based instead of rule-based

Dong et al. (2025): SD, M. Sebag, K. Uemura, A. Fujii, S. Chang, Y. Koyanagi, K. Maruhashi. DCILP: a distributed approach for large-scale causal

structure learning. In the 39th Annual AAAI Conference on Artificial Intelligence (AAAI-25). URL https://doi.org/10.1609/aaai.v39i15.33795.
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DCILP Phase-1: Divide by Markov Blankets

(a)
(b)

Definition (e.g., Peters et al. (2017)): The Markov blanket MB(Xi ) of a
variable Xi is the smallest set M ⊂ X such that

X ⊥⊥ X\(M ∪ {Xi}) given M.

Property (example of MB(X0))

▶ Parent nodes: X6, X8

▶ Children nodes: X2, X5

▶ Spouse nodes: X3, X1

B M(B)
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Theorem (Loh and Bühlmann, 2014): Under a faithfulness assumption, the Markov blankets can be
identified via the support of the precision matrix: M(B) = Supp((cov(X ))−1).
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DCILP Phase-2: Parallel Computing

Algorithm 1 (DCILP) Distributed causal discovery using ILP

1: (Phase-1) Divide:

Estimate Markov blanket MB(Xi ) for i = 1, . . . , d

2: (Phase-2) for i = 1, . . . , d do in parallel

3: A(i) ← Causal discovery on Si := MB(Xi ) ∪ {Xi} # using GES (Chickering, 2002) or
# DAGMA (Bello et al., 2022)

4: B̂
(i)
j,k ← A

(i)
j,k if j = i or k = i , and 0 otherwise

5: (Phase-3) Conquer:
B ← Reconciliation from {B̂(i), i = 1 . . . d} through the ILP

B⋆ Phase-2 on estimated M (all MBs)
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DCILP Phase-3

Algorithm 1 (DCILP) Distributed causal discovery using ILP

1: (Phase-1) Divide:

Estimate Markov blanket MB(Xi ) for i = 1, . . . , d

2: (Phase-2) for i = 1, . . . , d do in parallel

3: A(i) ← Causal discovery on Si := MB(Xi ) ∪ {Xi} # using GES (Chickering, 2002) or
# DAGMA (Bello et al., 2022)

4: B̂
(i)
j,k ← A

(i)
j,k if j = i or k = i , and 0 otherwise

5: (Phase-3) Conquer:
B ← Reconciliation from {B̂(i), i = 1 . . . d} through the ILP

Question: how to aggregate all the subgraphs B̂(i)?

B̂(i) B̂(j) B̂

+ →

Figure: Merge conflict in concatenation of two local results. (a) B̂(i)

?

(b) B
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DCILP Phase-3: Causal Structure in Binary Variables

Idea: Correct the edges in B̂ =
∑

i B̂
(i) with respect to all the Markov blanketsM

(assumeM =M(B⋆))

▶ A necessary condition for a candidate B is: M(B) = M(B⋆).
How to: auxiliary variables depending on Bij

• Bij = 1 if Xi → Xj .

• Vijk = Vjik = 1 if there is a v-structure (Xi → Xk ← Xj )

• Sij = Sji = 1 if Xi and Xj are spouses, i.e., ∃k, Vijk = 1.

Xi

Xk

Xj

▶ Consistency among the variables B, S and V

Our discovery: M(B) =M(B⋆) can be translated into binary linear constraints on (B, S ,V ).
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DCILP Phase-3: the ILP Formulation

Ensure

M(B) = M(B⋆)

Consistency of (B, S,V )

max
B,S,V

⟨B,
d∑

i=1

B̂(i)⟩ subject to

Bij = 0, Sij = Sji = 0 if Xi /∈MB(Xj) (1)

Bij + Bji + Sij ≥ 1 if Xi ∈MB(Xj) (2)

Bij + Bji ≤ 1 if Xi ∈MB(Xj) (3)

Vijk ≤ Bik , Vijk ≤ Bjk , if {i , j , k} ⊂ (Si ∩ Sj ∩ Sk) (4)

Bik + Bjk ≤ 1 + Vijk , if {i , j , k} ⊂ (Si ∩ Sj ∩ Sk) (5)

Vijk ≤ Sij , Sij ≤
∑
k

Vijk if {i , j , k} ⊂ (Si ∩ Sj ∩ Sk) (6)

for all i , j , k such that i ̸= j , j ̸= k, k ̸= i : (Si := MB(Xi ) ∪ {Xi})

Proposition: Under the Markov property assumption (distribution of X agreeing with B⋆): given the
correct MBs, the sought causal graph B⋆ and the underlying structures (S⋆,V ⋆) satisfy the ILP
constraints (1)–(6).
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DCILP: Experiments

Algorithm 1 (DCILP) Distributed causal discovery using ILP

1: (Phase-1) Divide:

Estimate Markov blanket MB(Xi ) for i = 1, . . . , d

2: (Phase-2) for i = 1, . . . , d do in parallel

3: A(i) ← Causal discovery on Si := MB(Xi ) ∪ {Xi} using GES or DAGMA (Bello et al., 2022)

4: B̂
(i)
j,k ← A

(i)
j,k if j = i or k = i , and 0 otherwise

5: (Phase-3) Conquer:
B ← Reconciliation from {B̂(i), i = 1 . . . d} through the ILP

▶ Phase 1: empirical precision matrix estimator

▶ Phase 2: Parallellized on min(2d , 400) CPU cores.
Running on Ruche (Mesocentre Paris-Saclay)

▶ Phase 3: implementation with Gurobi tools
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DCILP - Experiments: ILP versus the Naive Merge
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Figure: Comparing with the naive merge B̂: DCILP on SF3 data.
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DCILP: Experiments
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Figure: Comparison with DAGMA (Bello et al., 2022) and GES (Chickering, 2002) on ER2 data.
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DCILP: Experiments
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Figure: Running time comparisons with GES and DAGMA.
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DCILP: Experiments on MUNIN network

▶ A DAG with d = 1041 nodes
(https://www.bnlearn.com/bnrepository/)

▶ Medical expert-system model based on electromyographs
(EMG)
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Figure: Results on the MUNIN network data.
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Conclusion

▶ A distributed approach: DCILP leverages parallel computing while ensuring an optimized merge
of local solutions via an ILP-based algorithm.

▶ Modularity: DCILP allows for new alternative subroutines for Phase 1 and Phase 2.

▶ Significant improvement in scalability for learning sparse and large causal graphs.

Perspectives:
▶ Extend applicability:

▶ Nonlinear models
▶ Robustness to change of scales in the measurements/observations

▶ Adapt to the learning of denser causal graphs

▶ Causal modeling with latent variables
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