Large-Scale Causal Structure Learning: Challenges and New Methods

Journée NormaSTIC 2025 Université de Caen Normandie

June 26, 2025

Shuyu Dong¹ (L2S, CentraleSupélec)

Joint work with Michèle Sebag¹, Kento Uemura², Akito Fujii², Shuang Chang², Yoseke Koyanagi², and Koji Maruhashi²

¹ INRIA TAU team, LISN, Université Paris-Saclay

² Fujitsu Laboratories

Outline

- ▶ 1. Causality, Causal Discovery, and Related Work
- ▶ 2. DCILP: A Distributed Approach
- ▶ 3. Conclusion and Perspectives

Causality in A Few Examples

Image classification:

(A) Cow: 0.99, Pasture: 0.99, Grass: 0.99, No Person: 0.98, Mammal: 0.98

(B) No Person: 0.99, Water: 0.98, Beach: 0.97, Outdoors: 0.97, Seashore: 0.97

(C) No Person: 0.97, Mammal: 0.96, Water: 0.94, Beach: 0.94, Two: 0.94

Biomedical sciences:

(Huynh-Thu and Sanguinetti, 2018)

Applications:

- Cell state engineering
- Drug discovery

Objective of this talk: Causal Structural Model ← Causal Structure Learning

Causal Structure Learning

Definition (linear causal model): $X_i = \sum_{j=1}^d B_{ji} X_j + \epsilon_i$ for all i = 1, ..., d.

B: weighted adjacency matrix of a directed acyclic graph (DAG) \mathcal{G}

 ϵ_i : noise variable, $\epsilon_i \perp X_j$ for all $j \in \mathbf{Pa}_B(i) := \{k \in [d] : B_{ki} \neq 0\}$

(e.g., Peters et al. (2017))

$$X_{1} = \epsilon_{1}$$

$$X_{2} = B_{12}X_{1} + \epsilon_{2}$$

$$X_{3} = B_{13}X_{1} + \epsilon_{3}$$

$$X_{4} = \epsilon_{4}$$

$$X_{5} = B_{35}X_{3} + B_{45}X_{4} + \epsilon_{5}$$

$$X_{1} = \epsilon_{1}$$

$$X_{2} = \epsilon_{1}$$

$$X_{3} = \epsilon_{1}$$

$$X_{3} = \epsilon_{1}$$

$$X_{4} = \epsilon_{4}$$

$$X_{5} = \epsilon_{1}$$

$$X_{5} = \epsilon_{1}$$

$$X_{5} = \epsilon_{1}$$

$$X_{7} = \epsilon_{1}$$

$$X_{8} = \epsilon_{1}$$

$$X_{9} = \epsilon_{1}$$

$$X_{1} = \epsilon_{2}$$

$$X_{1} = \epsilon_{1}$$

$$X_{2} = \epsilon_{1}$$

$$X_{3} = \epsilon_{1}$$

$$X_{4} = \epsilon_{2}$$

$$X_{5} = \epsilon_{1}$$

$$X_{8} = \epsilon_{2}$$

$$X_{8} = \epsilon_{3}$$

$$\begin{cases} X_1 = f_1(E_1) \\ X_2 = f_2(X_1, E_2) \\ X_3 = f_3(X_1, E_3) \\ X_4 = f_4(E_4) \\ X_5 = f_5(X_3, X_4, E_5) \end{cases}$$

(Kalainathan et al., 2022)

Remarks:

- ► Markov property: $P(X_1, ..., X_d) = \prod_{i=1}^d P(X_i | \mathbf{Pa}_B(i))$.
- ▶ Acyclic and **sparse**: *B* is also a sparse matrix in most applications

Problem statement: Given samples \mathcal{X} of (X_1,\ldots,X_d) , learn a DAG matrix \mathcal{B} that best fits \mathcal{X} .

Causal Structure Learning: Related Work

Learning the cofficients for the nonzeros of B

Discrete methods: maximum likelihood within the set of DAGs:

- Acyclicity is a complex combinatorial constraint (NP-hardness (Chickering, 1996)).
- Minimize $f(B) = -\log p(B; \mathcal{X})$ by enumerating different DAGs

 \leadsto continuous optimization

GES algorithm (Chickering, 2002): greedy search to maximize the Bayesian information criterion (BIC)

$$S(G; \mathcal{X}) = \log p(\mathcal{X}|G, \widehat{\theta}) - \frac{d}{2} \log(n).$$

Causal Structure Learning: Related Work

Discrete methods: maximum likelihood within the set of DAGs:

- Acyclicity is a complex combinatorial constraint (NP-hardness (Chickering, 1996)).
- ▶ Minimize $f(B) = -\log p(B; \mathcal{X})$ by enumerating different DAGs \longrightarrow combinatorial problem
- Learning the cofficients for the nonzeros of B

 \leadsto continuous optimization

Continuous optimization:

Theorem (Zheng et al., 2018): The graph of $B \in \mathbb{R}^{d \times d}$ is a DAG if and only if

$$h(B) := \operatorname{tr}(\exp(B \odot B)) - d = 0.$$

Non-combinatorial Optimization NOTEARS (Zheng et al., 2018)

$$\min_{B \in \mathbb{R}^{d \times d}} f(B) + \lambda \|B\|_{\ell_1} \qquad \Leftrightarrow \qquad \min_{B \in \mathbb{R}^{d \times d}} f(B) + \lambda \|B\|_{\ell_1}$$

s.t.
$$tr(exp(B \odot B)) - d = 0$$
 s.t. $B \in DAG(d)$

- h(B) continuous and differentiable
- ► Cost: function evaluation of $B \to \operatorname{tr}(\exp(B \odot B))$ and its gradients $\leadsto O(d^3)$
- Augmented Lagrangian method . . . Nonconvex nonsmooth problem

Continuous Optimization Methods

Theorem (Zheng et al., 2018): The graph of $B \in \mathbb{R}^{d \times d}$ is a DAG if and only if

$$h(B) := \operatorname{tr}(\exp(B \odot B)) - d = 0.$$

Proof (sketch): For $\mathbb{B} \in \{0,1\}^{d \times d}$ and any $k \geq 1$,

 $\operatorname{tr}(\mathbb{B}^k) = \operatorname{amount} \operatorname{of} k$ -cycles.

Total amount of all cycles:

$$\operatorname{tr}(\exp(\mathbb{B})) = \operatorname{tr}\left(I + \sum_{k \geq 1} \frac{1}{k!} \mathbb{B}^k\right) = d + \sum_{k \geq 1} \frac{1}{k!} \operatorname{tr}(\mathbb{B}^k).$$

Trick to generalize $\mathbb B$ to weighted adjacency B: the Hadamard product where $(B\odot B)_{ij}=B_{ij}^2.$

Zheng et al. (2018): DAGs with NOTEARS: Continuous optimization for structure learning. Advances in Neural Information Processing Systems, volume 31.

Continuous Optimization Methods

Theorem (Zheng et al., 2018): The graph of $B \in \mathbb{R}^{d \times d}$ is a DAG if and only if

$$h(B) := \operatorname{tr}(\exp(B \odot B)) - d = 0.$$

Landscape of h(B) near $C = \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix}$, in two different subspaces of $\mathbb{R}^{2 \times 2}$:

$$E_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix},$$

$$E_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

Continuous Optimization Methods

Non-combinatorial Optimization NOTEARS (Zheng et al., 2018)

$$\min_{B \in \mathbb{R}^{d \times d}} f(B) + \lambda \|B\|_{\ell_1} \qquad \Leftrightarrow \qquad \min_{B \in \mathbb{R}^{d \times d}} f(B) + \lambda \|B\|_{\ell_1}$$
 s.t.
$$\operatorname{tr}(\exp(B \odot B)) - d = 0 \qquad \text{s.t.} \quad B \in \mathsf{DAG}(d)$$

The continuous opt. approach may induce heavy bias in the estimated causal order!

(Var-sortability bias (Reisach et al., 2021))

$$X_1 = \epsilon_1$$

 $X_4 = \epsilon_4$
 $X_2 = B_{12}X_1 + \epsilon_2$
 $X_3 = B_{13}X_1 + \epsilon_3$
 $X_5 = B_{35}X_3 + B_{45}X_4 + \epsilon_5$

- ▶ Homogeneous data $(var(\epsilon_i) \text{ equal})$: Order of $\{var(X_i)\}_{i=1,...,d}$ consistent with causal order
- Heteorgeneous data (var(ϵ_i) non-equal): Order of {var(X_i)} $_{i=1,...,d}$ no longer consistent \leadsto bias through the gradient $\nabla f(B)$

Challenges in Causal Structure Learning

For continuous optimization methods:

- Nonconvexity
- Heavy bias on heterogeneous data

For discrete & graphical methods:

- Acyclicity is a complex combinatorial constraint (NP-hardness (Chickering, 1996)).
- ► The set of DAGs is huge!

The size of
$$\mathbb{DAG}(d):=\{B\in\{0,1\}^{d imes d}:\mathcal{G}(B) \text{ is a DAG}\}$$
 grows as
$$|\,\mathbb{DAG}(d)|\approx d!2^{d^2/2}.$$

Outline

- 1. Causality, Causal Discovery, and Related Work
- ▶ 2. DCILP: A Distributed Approach
 - 3. Conclusion and Perspectives

Divide-and-Conquer in Three Phases

DCILP (Dong et al., 2025): Distributed causal discovery using ILP

- 1. **Phase 1**: divide $X = (X_1, \dots, X_d)$ into different subsets S_1, S_2, \dots
- 2. Phase 2: learn subgraph from data restricted to S_i separately
- 3. Phase 3: aggregate subgraphs

How it differs with the related work (Gao et al., 2017; Gu and Zhou, 2020; Mokhtarian et al., 2021):

- Phase 2: parallel instead of sequential
- Phase 3: integer programming-based instead of rule-based

Dong et al. (2025): SD, M. Sebag, K. Uemura, A. Fujii, S. Chang, Y. Koyanagi, K. Maruhashi. DCILP: a distributed approach for large-scale causal structure learning. In the 39th Annual AAAI Conference on Artificial Intelligence (AAAI-25). URL https://doi.org/10.1609/aaai.v39i15.33795.

DCILP Phase-1: Divide by Markov Blankets

Definition (e.g., Peters et al. (2017)): The Markov blanket $MB(X_i)$ of a variable X_i is the smallest set $M \subset X$ such that

$$X \perp X \setminus (M \cup \{X_i\})$$
 given M .

Property (example of $MB(X_0)$)

▶ Parent nodes: X₆, X₈

► Children nodes: X₂, X₅

Spouse nodes: X_3 , X_1

Theorem (Loh and Bühlmann, 2014): Under a faithfulness assumption, the Markov blankets can be identified via the support of the precision matrix: $\mathcal{M}(B) = \operatorname{Supp}((\operatorname{cov}(X))^{-1})$.

DCILP Phase-2: Parallel Computing

Algorithm 1 (DCILP) Distributed causal discovery using ILP

1: (Phase-1) Divide:

Estimate Markov blanket $MB(X_i)$ for i = 1, ..., d

- 2: (Phase-2) for i = 1, ..., d do in parallel
- 3: $A^{(i)} \leftarrow \text{Causal discovery on } \mathbf{S}_i := \mathbf{MB}(X_i) \cup \{X_i\}$

using GES (Chickering, 2002) or # DAGMA (Bello et al., 2022)

- 4: $\widehat{B}_{j,k}^{(i)} \leftarrow A_{j,k}^{(i)}$ if j = i or k = i, and 0 otherwise
- 5: (Phase-3) Conquer:

 $B \leftarrow \text{Reconciliation from } \{\widehat{B}^{(i)}, i = 1 \dots d\} \text{ through the ILP}$

DCILP Phase-3

Algorithm 1 (DCILP) Distributed causal discovery using ILP

1: (Phase-1) Divide:

Estimate Markov blanket
$$MB(X_i)$$
 for $i = 1, ..., d$

- 2: (Phase-2) for i = 1, ..., d do in parallel
- 3: $A^{(i)} \leftarrow \text{Causal discovery on } \mathbf{S}_i := \mathbf{MB}(X_i) \cup \{X_i\}$

using GES (Chickering, 2002) or # DAGMA (Bello et al., 2022)

- 4: $\widehat{B}_{j,k}^{(i)} \leftarrow A_{j,k}^{(i)}$ if j = i or k = i, and 0 otherwise
- 5: (Phase-3) Conquer:

$$B \leftarrow \text{Reconciliation from } \{\widehat{B}^{(i)}, i = 1 \dots d\} \text{ through the ILP}$$

Question: how to aggregate all the subgraphs $\widehat{B}^{(i)}$?

Figure: Merge conflict in concatenation of two local results.

DCILP Phase-3: Causal Structure in Binary Variables

Idea: Correct the edges in $\widehat{B} = \sum_i \widehat{B}^{(i)}$ with respect to all the Markov blankets \mathcal{M} (assume $\mathcal{M} = \mathcal{M}(B^*)$)

- A necessary condition for a candidate B is: $\mathcal{M}(B) = \mathcal{M}(B^*)$. How to: auxiliary variables depending on B_{ij}
 - $B_{ij} = 1$ if $X_i \rightarrow X_j$.
 - ullet $V_{ijk}=V_{jik}=1$ if there is a v-structure $(X_i o X_k\leftarrow X_j)$
 - $S_{ij} = S_{ji} = 1$ if X_i and X_j are spouses, i.e., $\exists k$, $V_{ijk} = 1$.
- ightharpoonup Consistency among the variables B, S and V

Our discovery: $\mathcal{M}(B) = \mathcal{M}(B^*)$ can be translated into binary linear constraints on (B, S, V).

DCILP Phase-3: the ILP Formulation

for all i, j, k such that $i \neq j, j \neq k, k \neq i$:

Ensure
$$\mathcal{M}(B) = \mathcal{M}(B^*)$$

$$B_{ij} = 0, \quad S_{ij} = S_{ji} = 0$$

$$B_{ij} + B_{ji} + S_{ij} \ge 1$$

$$B_{ij} + B_{ji} \le 1$$

$$V_{ijk} \le B_{ik}, \quad V_{ijk} \le B_{jk},$$

$$B_{ik} + B_{jk} \le 1 + V_{ijk},$$

$$W_{ijk} \le S_{ij}, \quad S_{ij} \le \sum_{k} V_{ijk}$$

$$if \quad \{i, j, k\} \subset (\mathbf{S}_i \cap \mathbf{S}_j \cap \mathbf{S}_k)$$

$$V_{ijk} \le S_{ij}, \quad S_{ij} \le \sum_{k} V_{ijk}$$

$$if \quad \{i, j, k\} \subset (\mathbf{S}_i \cap \mathbf{S}_j \cap \mathbf{S}_k)$$

$$(5)$$

 $\max_{B,S,V} \langle B, \sum_{i=1}^{u} \widehat{B}^{(i)} \rangle \quad \text{subject to} \quad$

Proposition: Under the Markov property assumption (distribution of X agreeing with B^*): given the correct MBs, the sought causal graph B^* and the underlying structures (S^*, V^*) satisfy the ILP constraints (1)–(6).

 $(S_i := MB(X_i) \cup \{X_i\})$

DCILP: Experiments

Algorithm 1 (DCILP) Distributed causal discovery using ILP

1: (Phase-1) Divide:

Estimate Markov blanket $MB(X_i)$ for i = 1, ..., d

- 2: (Phase-2) for i = 1, ..., d do in parallel
- 3: $A^{(i)} \leftarrow \text{Causal discovery on } \mathbf{S}_i := \mathbf{MB}(X_i) \cup \{X_i\}$ using GES or DAGMA (Bello et al., 2022)
- 4: $\widehat{B}_{j,k}^{(i)} \leftarrow A_{j,k}^{(i)}$ if j=i or k=i, and 0 otherwise
- 5: (Phase-3) Conquer:

$$B \leftarrow \text{Reconciliation from } \{\widehat{B}^{(i)}, i = 1 \dots d\} \text{ through the ILP}$$

- Phase 1: empirical precision matrix estimator
- Phase 2: Parallellized on min(2d, 400) CPU cores. Running on Ruche (Mesocentre Paris-Saclay)
- ▶ Phase 3: implementation with Gurobi tools

DCILP - Experiments: ILP versus the Naive Merge

Figure: Comparing with the naive merge \widehat{B} : DCILP on SF3 data.

DCILP: Experiments

Figure: Comparison with DAGMA (Bello et al., 2022) and GES (Chickering, 2002) on ER2 data.

DCILP: Experiments

Figure: Running time comparisons with GES and DAGMA.

DCILP: Experiments on MUNIN network

- ► A DAG with d = 1041 nodes (https://www.bnlearn.com/bnrepository/)
- Medical expert-system model based on electromyographs (EMG)

Figure: Results on the MUNIN network data.

Outline

- 1. Causality, Causal Discovery, and Related Work
- 2. DCILP: A Distributed Approach
- ▶ 3. Conclusion and Perspectives

Conclusion

- ▶ A distributed approach: DCILP leverages parallel computing while ensuring an optimized merge of local solutions via an ILP-based algorithm.
- ▶ Modularity: DCILP allows for new alternative subroutines for Phase 1 and Phase 2.
- Significant improvement in scalability for learning sparse and large causal graphs.

Perspectives:

- Extend applicability:
 - Nonlinear models
 - ▶ Robustness to change of scales in the measurements/observations
- Adapt to the learning of denser causal graphs
- Causal modeling with latent variables

Acknowledgement

TAU, INRIA Saclay

Fujitsu Laboratories

Thank You!

References

- Bello, K., Aragam, B., and Ravikumar, P. (2022). DAGMA: Learning dags via m-matrices and a log-determinant acyclicity characterization. *Advances in Neural Information Processing Systems*, 35:8226–8239.
- Chickering, D. M. (1996). Learning bayesian networks is NP-complete. *Learning from data: Artificial intelligence and statistics V*, pages 121–130.
- Chickering, D. M. (2002). Optimal structure identification with greedy search. *Journal of machine learning research*, 3(Nov):507–554.
- Dong, S., Sebag, M., Uemura, K., Fujii, A., Chang, S., Koyanagi, Y., and Maruhashi, K. (2025). DCILP: A distributed approach for large-scale causal structure learning. *The 39th Annual AAAI Conference on Artificial Intelligence (AAAI-25)*.
- Gao, T., Fadnis, K., and Campbell, M. (2017). Local-to-global bayesian network structure learning. In *International Conference on Machine Learning*, pages 1193–1202. PMLR.
- Gu, J. and Zhou, Q. (2020). Learning big gaussian bayesian networks: Partition, estimation and fusion. *Journal of machine learning research*, 21(158):1–31.
- Huynh-Thu, V. A. and Sanguinetti, G. (2018). Gene regulatory network inference: an introductory survey. In *Gene regulatory networks: Methods and protocols*, pages 1–23. Springer.

References (cont.)

- Kalainathan, D., Goudet, O., Guyon, I., Lopez-Paz, D., and Sebag, M. (2022). Structural agnostic modeling: Adversarial learning of causal graphs. *Journal of Machine Learning Research*, 23(219):1–62.
- Loh, P.-L. and Bühlmann, P. (2014). High-dimensional learning of linear causal networks via inverse covariance estimation. *The Journal of Machine Learning Research*, 15(1):3065–3105.
- Mokhtarian, E., Akbari, S., Ghassami, A., and Kiyavash, N. (2021). A recursive Markov boundary-based approach to causal structure learning. In *The KDD'21 Workshop on Causal Discovery*, pages 26–54. PMLR.
- Peters, J., Janzing, D., and Schölkopf, B. (2017). *Elements of causal inference: foundations and learning algorithms*. The MIT Press.
- Reisach, A. G., Seiler, C., and Weichwald, S. (2021). Beware of the simulated dag! causal discovery benchmarks may be easy to game. In *Advances in Neural Information Processing Systems 34:*Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pages 27772–27784.
- Zheng, X., Aragam, B., Ravikumar, P. K., and Xing, E. P. (2018). DAGs with NO TEARS: Continuous optimization for structure learning. In *Advances in Neural Information Processing Systems*, volume 31.