

▲口▶ ▲圖▶ ▲理▶ ▲理▶ - 理……

A Conflict-Guided Evidential Multimodal Fusion for Semantic Segmentation

Lucas Deregnaucourt¹ Hind Laghmara¹ Alexis Lechervy² Samia Ainouz¹

¹INSA Rouen Normandie, Univ Rouen Normandie, Université Le Havre Normandie, Normandie Univ, LITIS UR 4108, F-76000 Rouen, France

²Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, 14000 Caen, France

Context	A short introduction to the Dempster-Shafer Theory	Method	Experiments	Conclusion
0000				

1 Context

2 A short introduction to the Dempster-Shafer Theory

3 Method

4 Experiments

æ

-< ≣⇒

Context ○●○○	A short introduction to the Dempster-Shafer Theory	Method 0000	Experiments 00000	Conclusion
Autonor	mous driving			

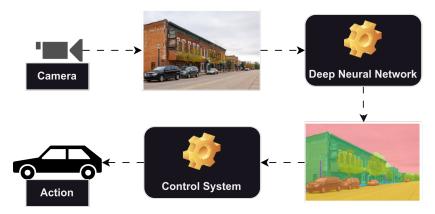


Figure 1: Autonomous driving flowchart

토▶ 문

< 17 > <

Context ○○●○	A short introduction to the Dempster-Shafer Theory	Method 0000	Experiments	Conclusion
Problen	natic			

 $\rightarrow~\text{Task:}$ multimodal semantic segmentation for autonomous driving.

日本・モン・モン

Context ○○●○	A short introduction to the Dempster-Shafer Theory	Method 0000	Experiments	Conclusion
Probler	matic			

- $\rightarrow~\text{Task:}$ multimodal semantic segmentation for autonomous driving.
- \rightarrow Current state of the art models **overtrust** the most informative sensor, leading to a **high drop of performances** in case of **sensor failure**.

Context ○○●○	A short introduction to the Dempster-Shafer Theory	Method 0000	Experiments	Conclusion
Probler	matic			

- \rightarrow Task: multimodal semantic segmentation for autonomous driving.
- $\rightarrow\,$ Current state of the art models overtrust the most informative sensor, leading to a high drop of performances in case of sensor failure.
- $\rightarrow\,$ This lack of robustness is one of the key challenges of autonomous driving systems.

Context ○○○●	A short introduction to the Dempster-Shafer Theory	Method 0000	Experiments	Conclusion
Our ap	proach			

Motivation

If an expert is highly in conflict with the others, it is reasonable to consider that either this expert struggles to make a decision or there is a sensor failure. Therefore, it is suitable to weaken the implication of this expert in the fusion process according to its conflict with the others.

 $\rightarrow\,$ We propose an adaptive multimodal late fusion pipeline to handle sensor failures for semantic segmentation.

Context ○○○●	A short introduction to the Dempster-Shafer Theory	Method 0000	Experiments	Conclusion
Our ap	proach			

Motivation

If an expert is highly in conflict with the others, it is reasonable to consider that either this expert struggles to make a decision or there is a sensor failure. Therefore, it is suitable to weaken the implication of this expert in the fusion process according to its conflict with the others.

- $\rightarrow\,$ We propose an adaptive multimodal late fusion pipeline to handle sensor failures for semantic segmentation.
- $\rightarrow\,$ The proposed parameter-free fusion is grounded in the Dempster-Shafer Theory.

Context 000●	A short introduction to the Dempster-Shafer Theory	Method 0000	Experiments	Conclusion
Our ap	proach			

Motivation

If an expert is highly in conflict with the others, it is reasonable to consider that either this expert struggles to make a decision or there is a sensor failure. Therefore, it is suitable to weaken the implication of this expert in the fusion process according to its conflict with the others.

- $\rightarrow\,$ We propose an adaptive multimodal late fusion pipeline to handle sensor failures for semantic segmentation.
- $\rightarrow\,$ The proposed parameter-free fusion is grounded in the Dempster-Shafer Theory.
- $\rightarrow\,$ The experts will be discounted according to their distance-based conflicts before the fusion.

Context	A short introduction to the Dempster-Shafer Theory	Method	Experiments	Conclusion
	•00000			

Context

2 A short introduction to the Dempster-Shafer Theory

3 Method

4 Experiments

æ

< 17 k

< ≣ ≯

< ∃ >

Context	

A short introduction to the Dempster-Shafer Theory

Method

periments 000

・ロト ・日ト ・ヨト ・ヨト

Conclusion

Visual representation of the DST

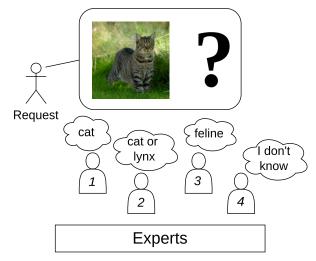


Figure 2: Multi-expert assumptions on image classification

E

Context	A short introduction to the Dempster-Shafer Theory ○○●○○○	Method 0000	Experiments 00000	Conclusion
Basic E	Belief Assignment			

$$\begin{array}{ll} \textbf{Basic Belief} \begin{cases} m(.): 2^{\Omega} \rightarrow [0,1] \\ \sum_{A \subseteq \Omega} m(A) = 1 \end{cases} & \Omega = \{\omega_1, \omega_2, \ldots, \omega_K\}: \text{ frame of discernment} \\ \text{Set of exhaustive and exclusive hypotheses} \end{cases}$$

Context A short i	ntroduction to the Dempster-Shafe	r Theory	Method 0000	Experiments 00000	Conclusion
Basic Belief A	ssignment				
Basic Belief $\begin{cases} r \\ r $				ime of disco xclusive hyp	
$m_1(\{cat\})=0.7$ $m_1(\{lynx\})=0.2$ $m_1(\Omega)=0.1$	$egin{aligned} m_2(\{cat\}) &= 0.2\ m_2(\{lynx\}) &= 0.15\ m_2(\{cat, lynx\}) &= 0.5\ m_2(\Omega) &= 0.15 \end{aligned}$	$m_3(\{cat, cat, cat, cat, cat, cat, cat, cat, $	$egin{aligned} &a\})=0.04\ &bynx\})=0.\ &bynx,\cdots,pn \end{aligned}$	05 $\iota ma\}) = 0.4$	$m_4(\Omega)=1$

Figure 3: Mass assignments to sets of classes

A¶ ▶

Context	A short introduction to the Dempster-Shafer Theory $\circ \circ \circ \bullet \circ \circ$	Method 0000	Experiments 00000	Conclusion
Inform	ation fusion			

Dempster's rule

Let m_1 and m_2 be two mass functions on Ω . The Dempster's rule to fuse them is defined as follows¹²:

$$m_{12}(A) = (m_1 \oplus m_2)(A) = \frac{1}{1 - \kappa} \sum_{B \cap C = A} m_1(B) m_2(C)$$
(1)

 $\begin{array}{l} \forall A \subseteq \Omega \setminus \{ \emptyset \} \\ \text{with } \kappa \text{ the degree of conflict between the two sources of evidence:} \\ \kappa = \sum_{B \cap C = \emptyset} m_1(B) m_2(C). \end{array}$

¹A.P. Dempster. "Upper and lower probabilities induced by a multivalued mapping". In: The Annals of Mathematical Statistics 38.2 (1967), pp. 325-339

Glenn Shafer. A mathematical theory of evidence. Vol. 42. Princeton university@press; 1976 < ≧ → ≧ ∽ ۹ (

Context	A short introduction to the Dempster-Shafer Theory	Method 0000	Experiments 00000	Conclusion
Probab	pility transformation			

To make a precise decision, we need to transform the mass function m into a probability vector:

$${}^{\mathrm{L}}BetP(\omega_k) = \sum_{\omega_k \in A \subseteq \Omega} \frac{m(A)}{|A|}$$
⁽²⁾

¹P. Smets. "The combination of evidence in the transferable belief model". In: Transactions on pattern analysis and machine intelligence 12.2 (1990), pp. 447–458

 ² Jean Dezert and Florentin Smarandache. "A new probabilistic transformation of belief mass assignment". In:

 CoRR abs/0807.3669 (2008). arXiv: 0807.3669. URL: http://arxiv.org/abs/0807.3669 \ < \arrow \</td>

Context	A short introduction to the Dempster-Shafer Theory ○○○○●○	Method 0000	Experiments	Conclusion
Probab	ility transformation			

To make a precise decision, we need to transform the mass function m into a probability vector:

$${}^{1}BetP(\omega_{k}) = \sum_{\omega_{k} \in A \subseteq \Omega} \frac{m(A)}{|A|}$$
⁽²⁾

$${}^{2}DSmP_{\varepsilon}(\omega_{k}) = \sum_{A \subseteq \Omega} m(A) \frac{|\omega_{k} \cap A| (m(\omega_{k}) + \varepsilon)}{\sum_{a \in A} m(a) + \varepsilon |A|}$$
(3)

¹P. Smets. "The combination of evidence in the transferable belief model". In: Transactions on pattern analysis and machine intelligence 12.2 (1990), pp. 447–458

 ² Jean Dezert and Florentin Smarandache. "A new probabilistic transformation of belief mass assignment". In:

 CoRR abs/0807.3669 (2008). arXiv: 0807.3669. URL: http://arxiv.org/abs/0807.3669 \ < \arepsilon \ < \arepsil\ < \areq\ < \arepsilon \ < \arepsilon \ < \arepsilon

Context 0000	A short introduction to the Dempster-Shafer Theory	Method 0000	Experiments 00000	Conclusion
Practica	al issues			

Curse of dimensionality:

$$\begin{split} \Omega &= \{\omega_1, \dots, \omega_K\} \implies K \text{ classes.} \\ 2^{\Omega} &= \{\omega_1, \dots, \omega_K, \{\omega_1, \omega_2\}, \dots, \Omega\} \implies 2^K - 1 \text{ sets of classes.} \end{split}$$

ł

Context	A short introduction to the Dempster-Shafer Theory	Method	Experiments	Conclusion
0000	○○○○○●	0000	00000	
Practica	al issues			

Curse of dimensionality:

$$\Omega = \{\omega_1, \dots, \omega_K\} \implies K \text{ classes.}$$

$$2^{\Omega} = \{\omega_1, \dots, \omega_K, \{\omega_1, \omega_2\}, \dots, \Omega\} \implies 2^K - 1 \text{ sets of classes.}$$

Common solution: Only the global uncertainty $m(\Omega)$ and the singletons $\{\omega_i\}_{i=1,...,K}$ are considered.

Context	A short introduction to the Dempster-Shafer Theory	Method ●○○○	Experiments 00000	Conclusion

Context

2 A short introduction to the Dempster-Shafer Theory

3 Method

4 Experiments

æ

< E >

< 17 b

Context 0000	A short introduction to the Dempster-Shafer Theory	Method ○●○○	Experiments 00000	Conclusion

Evidential Conflict-Guided Late Fusion

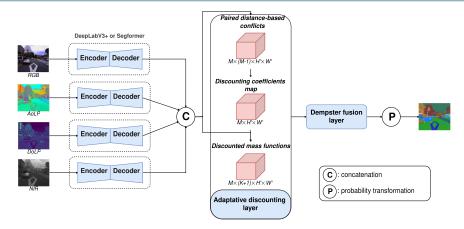


Figure 4: ECoLaF architecture. Each modality is associated to an independant encoder-decoder model such as DeepLabV3+ or Segformer. The mass functions of each modality are weakened by the adaptative discounting layer and fused by the Dempster's rule. The final decision is made after converting the mass functions into probabilities.

E

イロト イポト イヨト イヨト

Context	A short introduction to the Dempster-Shafer Theory	Method ○○●○	Experiments 00000	Conclusion
Adapta	tive discounting lover			

Adaptative discounting layer Measure of conflict

Given M mass functions $m_{1,...,M}$, we compute the paired distances¹:

$$d_{i,j} = dist(m_i, m_j) = \sqrt{\frac{1}{2}(m_i - m_j)^T D(m_i - m_j)}$$
(4)

where $D \in \mathbb{R}^{|\Omega|+1} \times \mathbb{R}^{|\Omega|+1}$, $D(A, B) = \frac{|A \cap B|}{|A \cup B|}$

¹Anne-Laure Jousselme, Dominic Grenier, and Éloi Bossé. "A new distance between two bodies of evidence". In: Information fusion 2.2 (2001), pp. 91–101 ← □ ▷ ← ⊕ ▷ ← ⊕ ▷ ← ⊕ ▷ ↓ ⊕ ○ ♡ ♡

Context	A short introduction to the Dempster-Shafer Theory	Method ○○●○	Experiments 00000	Conclusion

Adaptative discounting layer Measure of conflict

Given M mass functions $m_{1,...,M}$, we compute the paired distances¹:

$$d_{i,j} = dist(m_i, m_j) = \sqrt{\frac{1}{2}(m_i - m_j)^T D(m_i - m_j)}$$
(4)
where $D \in \mathbb{R}^{|\Omega|+1} \times \mathbb{R}^{|\Omega|+1}$, $D(A, B) = \frac{|A \cap B|}{|A \cup B|}$
$$D = \frac{\begin{vmatrix} A & B & C & \dots & \Omega \\ \hline A & 1 & 0 & 0 & \dots & \frac{1}{|\Omega|} \\ B & 0 & 1 & 0 & \dots & \frac{1}{|\Omega|} \\ \hline B & 0 & 1 & 0 & \dots & \frac{1}{|\Omega|} \\ \vdots & \dots & \dots & \ddots & \frac{1}{|\Omega|} \\ \vdots & \dots & \dots & \ddots & \frac{1}{|\Omega|} \\ \Omega & \frac{1}{|\Omega|} & \frac{1}{|\Omega|} & \frac{1}{|\Omega|} & \dots & 1 \end{vmatrix}$$

 1
 Anne-Laure Jousselme, Dominic Grenier, and Éloi Bossé. "A new distance between two bodies of evidence".

 In:
 Information fusion 2.2 (2001), pp. 91–101

Context	A short introduction to the Dempster-Shafer Theory	Method ○○●○	Experiments	Conclusion
Adapta	tive discounting lover			

Adaptative discounting layer Measure of conflict

Given M mass functions $m_{1,...,M}$, we compute the paired distances¹:

$$d_{i,j} = dist(m_i, m_j) = \sqrt{\frac{1}{2}(m_i - m_j)^T D(m_i - m_j)}$$
(4)

The conflict² between m_i and m_j can be obtained by:

$$Conf_{i,j} = \left(1 - \frac{2|\Omega| + 1}{\left(|\Omega| + 1\right)^2}\right) \times d_{i,j}$$
(5)

¹Anne-Laure Jousselme, Dominic Grenier, and Éloi Bossé. "A new distance between two bodies of evidence". In: Information fusion 2.2 (2001), pp. 91–101

²Arnaud Martin. "About conflict in the theory of belief functions". In: Belief Functions: Theory and Applications: Proceedings of the 2nd International Conference on Belief Functions. Springer. 2012, pp. 161–168

Context	A short introduction to the Dempster-Shafer Theory	Method ○○●○	Experiments	Conclusion
•	tive discounting layer of conflict			

The conflict² between m_i and m_j can be obtained by:

$$Conf_{i,j} = \left(1 - \frac{2|\Omega| + 1}{\left(|\Omega| + 1\right)^2}\right) \times d_{i,j} \tag{4}$$

The paired conflicts are averaged to obtain the conflict associated to each mass function m_i :

$$Conf_i = \frac{1}{M-1} \sum_{j=1, i \neq j}^{M} Conf_{i,j}$$
(5)

 ²Arnaud Martin. "About conflict in the theory of belief functions". In:

 Belief Functions: Theory and Applications: Proceedings of the 2nd International Conference on Belief Functions.

 Springer. 2012, pp. 161–168

Context	A short introduction to the Dempster-Shafer Theory	Method ○○○●	Experiments 00000	Conclusion
•	tive discounting layer ctions discounting			

Given a mass function m_i and a discounting coefficient $\alpha_i \in [0, 1]$, the discounting procedure is defined as follows:

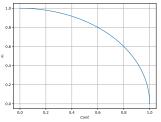
$$\begin{cases} m_i^{\alpha_i}(\omega_k) = \alpha_i m_i(\omega_k) \\ m_i^{\alpha_i}(\Omega) = 1 - \alpha_i (1 - m_i(\Omega)) \end{cases}$$
(6)

Context	A short introduction to the Dempster-Shafer Theory	Method ○○○●	Experiments	Conclusion
	tive discounting layer ctions discounting			

Given a mass function m_i and a discounting coefficient $\alpha_i \in [0, 1]$, the discounting procedure is defined as follows:

$$\begin{cases} m_i^{\alpha_i}(\omega_k) = \alpha_i m_i(\omega_k) \\ m_i^{\alpha_i}(\Omega) = 1 - \alpha_i (1 - m_i(\Omega)) \end{cases}$$
(6)

We can compute the discounting coefficient α_i associated to m_i from $Conf_i^{1}$:



¹Arnaud Martin, Anne-Laure Jousselme, and Christophe Osswald. "Conflict measure for the discounting operation on belief functions". In: 2008 11th International Conference on Information Fusion 2008, pp. 1–8 – 9

Context	A short introduction to the Dempster-Shafer Theory	Method	Experiments	Conclusion
			•0000	

Context

2 A short introduction to the Dempster-Shafer Theory

B Method

표 문 표

< 17 b

Context	A short intro	oduction to the Demp	ster-Shafer Theory	Method 0000	Experiments ○●○○○	Conclusion
Dataset MCubeS						
As	phalt	Concrete	Metal	Road Markin	g Gravel	
, L	G			A	00	
Fa	abric	Glass	Plaster	Plastic	Rubber	č

Cobblestone

Water

Brick

Human Body

A Conflict-Guided Evidential Multimodal Fusion for Semantic Segmentation

Leaf

Ceramic

Sand

Wood

Grass

Sky

Context	A short introduction to the

Dempster-Shafer Theory

Method

Experiments

Conclusion

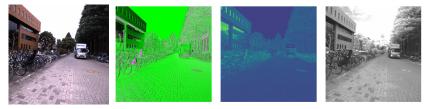
Quantitative results

	convolu	tion-based models	transfor	mers-based models
RGB AoLp DoLp NIR	MCubeSNet	ECoLaF-DeepLabV3+	CMNeXt	ECoLaF-Segformer
\checkmark	30.79	43.49	42.32	46.48
\checkmark	3.63	21.45	2.1	10.45
\checkmark	1.66	35.44	3.42	19.84
\checkmark	1.00	32.81	2.15	16.79
mean for 3 failures	9.27		- 12.50 -	23.39
\checkmark \checkmark	38.10	43.36	48.81	46.48
\checkmark	35.98	44.95	49.00	48.11
\checkmark	33.16	44.39	48.36	45.01
\checkmark \checkmark	4.60	36.35	1.43	27.61
\checkmark \checkmark	1.67	36.81	1.74	23.14
\checkmark	1.12	41.53	3.15	27.19
mean for 2 failures	19.11	41.23	25.42	36.26
\checkmark \checkmark \checkmark	41.54	45.26	49.06	48.75
\checkmark \checkmark \checkmark	40.61	44.25	49.78	47.77
\checkmark \checkmark \checkmark	39.53	45.57	50.02	49.85
\checkmark \checkmark \checkmark	2.74	41.72	5.05	33.31
mean for 1 failure	26.11		38.48	44.92
\checkmark \checkmark \checkmark \checkmark	43.26	45.74	51.54	49.85
average mean	24.44	41.12	31.99	38.61

Table 1: Performances comparison of using different combinations of modalities in mIoU(%) on MCubeS dataset. Bold values represent the best performances to the nearest rounding for each combination of modalities. =

Context	A short introduction to the Dempster-Shafer Theory	Method 0000	Experiments 000●0	Conclusion
Qualita	tive results			

All modalities are available



(a) RGB

(c) DoLP

(e) MCubeSNet

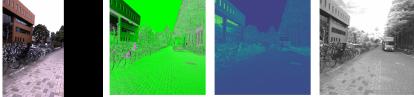
(f) CMNeXt

(h) Ground truth

A Conflict-Guided Evidential Multimodal Fusion for Semantic Segmentation

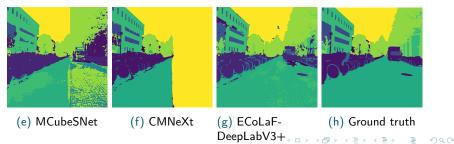
æ

Context	A short introduction to the Dempster-Shafer Theor	ry Method Experime 0000 0000●	nts Conclusion
Visual Partial R	results GB occlusion		
11.			



(a) RGB

(c) DoLP



Context	A short introduction to the Dempster-Shafer Theory	Method 0000	Experiments 00000	Conclusion ●○
Conclu	sion			

- $\rightarrow\,$ Robust models are required in real life applications to face hazards.
- \rightarrow Parameter-free techniques are fully adaptive, improving models robustness. On the contrary, parameters-guided fusions tend to overtrust the most informative sensor, leading to a fragile robustness.
- $\rightarrow\,$ Our results show that the proposed ECoLaF pipeline offers a good tradeoff between performances and robustness in case of sensor failure.

Context	A short introduction to the Dempster-Shafer Theory	Method 0000	Experiments 00000	Conclusion ○●

Code is available!

pip install ecolaf

https://github.com/deregnaucourtlucas/ECoLaF

토▶ 문

47 ▶