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Discrete-Time Dynamic Graphs
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Some tasks

Dynamic Link Prediction : From the history of the graphs — Predict the future connections

Close to a classification task: Classify a negative link to 0 and a positive link to 1.




Classic Training Framework on DTDG

Classical Training of Dynamic Graph Neural Networks (DGNNSs)

on DTDG;

combine a GNN (spatial) and a time-serie model (dynamic)

Spatial Learning

GNN(Gy)

f

(H, 7t

Dynamic Learning

Main difference: choice of spatial model and

a time-serie function f.

GNN learn the structure of current snapshot.

f update dynamically node embedding.

- Examples from state of the art methods.

Model
LSTM-GCN (2017)
EvolveGCN (2020)

DySat (2019)

ROLAND (2022)

Spatial (GNN)
GCN (Kipf16)
GCN (Kipf16)

GAT (Velikcovic17)

Generalization to
all GNN

Dynamic (f)
LSTM
GRU

Transformer1D
(AttentionNeed17)

GRU /MLP/
Moving Average



Message Passing (MP-GNNSs)

TARGET NODE Idea: Propagate and aggregate messages (i.e embeddings)
from neighborhood (GCN Kipf 2016)

INPUT GRAPH

Cours CS224w (Lescovec 2019)
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Some identified limitations of MP-GNNSs

- Limited Expressivity
MP-GNNs can't differentiate some
structures. (Weisfeiler-Lehman 1997)

As the WL test, MP-GNNs can'’t differentiate those two
structures (How powerful are GNN, Xu 2018)

- Oversmoothing
Adding to many layers — all nodes will share
same representations (Oversmoothing Li 2018)

- Oversquashing
Receptive field grow exponentially by aggregating
neighbor of neighbor (Bottleneck Alon 2020 )




Limitations of existing DGNNs architectures

Recently WL test has been extended to DTDG with an analysis of the expressive
power of existing DGNNs architectures*.

*Beddar-Wiesing, S. et al. (2022). Weisfeiler--Lehman goes Dynamic: An Analysis of the Expressive Power of Graph Neural
Networks for Attributed and Dynamic Graphs. Neural Networks.

Important statements

Def: “If the two graphs are dynamic, they are called to be isomorphic if and only if the static graph
snapshots of each timestep are isomorphic.”

Theorem : Let G a DTDG, N is the maximal number of nodes in a snapshot. Then there exists a DGNN
composed by GNN with 2N-1 layers a hidden dimension r =1 and a RNN with a state dimension of 1 that
can approximate the dynamic system.



Limitations of existing DGNNs architectures

- To be an universal approximator of dynamic system, a DGNN must
stack 2N-1 layers.

- Stacking to many layers can lead to oversmoothing (Oversmoothing
Li 2018) and oversquashing (Bottleneck Alon 2020 ).

- Difficult to train deep GNNs and hard to capture dynamic
dependencies between nodes (1 to 1 memory update).



Contributions and motivations



Ideas and
motivations

1 layer of global attention can resolve the
above-mentioned limitations.

Interconnect all nodes at any time-steps
to model Spatio-Temporal dependencies.

Show that attention models scenarios are
more powerful than DGNNs (RNN-GNN)
on real-world DTDG.

Take benefits of the Full Attention
Transformer to construct pairwise
representation for dynamic link prediction



Space-Time Attention
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Beyond MP-GNNs: Graph Transformer (GT)

Groph Transformer

- Adapted from Transformers in NLP and Vision
(Generalization Dwivedi 2020)

- Interconnect all nodes — Lost of the structure.

- Positional encoding (PE) and structural encoding (SE)
inform the transformer about the graph structure

O
Global attention

- Universal approximator with the right sets of PE

real ed
e (Kreuzer 2021). More expressive than any k-WL test.

- - vir'tual e_dge_

Intuition : Learn an augmented graph through attention factor (bridge

GraphGPS (Rampasek 2023) with Graph Structure Learning)



Beyond MP-GNNs: Graph Transformer (GT)

Eigenvalues of Graph 1 Eigenvalues of Graph 2
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Beyond MP-GNNs: Graph Transformer

Table 1: The proposed categorization of positional encodings (PE) and structural encodings (SE).
Some encodings are assigned to multiple categories in order to show their multiple expected roles.

Encoding type

Description

Examples

Local PE
node features

Allow a node to know its position and role
within a local cluster of nodes.

Within a cluster, the closer two nodes are
to each other, the closer their local PE will
be, such as the position of a word in a sen-
tence (not in the text).

Sum each column of non-diagonal elements of the m-steps
random walk matrix.

Distance between a node and the centroid of a cluster con-
taining the node.

Global PE

node features

Allow a node to know its global position
within the graph.

Within a graph, the closer two nodes are,
the closer their global PE will be, such as
the position of a word in a text.

Eigenvectors of the Adjacency, Laplacian [15, 36] or dis-
tance matrices.

SignNet [39] (includes aspects of relative PE and local SE).
Distance from the graph’s centroid.

« Unique identifier for each connected component of the

graph.

Relative PE
edge features

Allow two nodes to understand their dis-
tances or directional relationships.
Edge embedding that is correlated to the

distance given by any global or local PE, * y L Iy 10C
* PEG layer [57] with specific node-wise distances.
* Boolean indicating if two nodes are in the same cluster.

such as the distance between two words.

Pair-wise node distances [38, 3, 36, 63, 44] based on
shortest-paths, heat kernels, random-walks, Green’s func-
tion, graph geodesic, or any local/global PE.

Gradient of eigenvectors [3, 36] or any local/global PE.

Local SE
node features

Allow a node to understand what sub-
structures it is a part of.

Given an SE of radius m, the more similar
the m-hop subgraphs around two nodes
are, the closer their local SE will be.

* Degree of a node [63].

.

Diagonal of the m-steps random-walk matrix [16].
Time-derivative of the heat-kernel diagonal (gives the de-
gree at t = 0).

Enumerate or count predefined structures such as triangles,
rings, etc. [6, 68].

Ricci curvature [54].

Global SE
graph features

Provide the network with information
about the global structure of the graph.
The more similar two graphs are, the
closer their global SE will be.

Eigenvalues of the Adjacency or Laplacian matrices [36].
Graph properties: diameter, girth, number of connected
components, # of nodes, # of edges, nodes-to-edges ratio.

Relative SE
edge features

Allow two nodes to understand how much
their structures differ.

Edge embedding that is correlated to the
difference between any local SE.

Pair-wise distance, encoding, or gradient of any local SE.

* Boolean indicating if two nodes are in the same sub-

structure [5] (similar to the gradient of sub-structure enu-
meration).

Exhaustive list of different structural and positional
encoding. (Rampasek 2023)

- Node degree
- Random Walk
- Distances (SPD)



Full Attention on Dynamic Graph



Space-Time Attention Edge Representation Link Prediction
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Two Main contributions; Space-Time Attention and Edge Representation




Full Space-Time Attention

- ldea: Apply a global attention on DTDG with Transformer

- Each node at each time-steps is an independent token.

We lose both the structural / positional and temporal information of the
DTDG.

- Transformer must be informed about :
The position / structure of the graph around the token
The time step in which the token is located.
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For each token z. we inject temporal (TE) and structural information (RW) before the Full Attention




Incorporate Structural and Temporal Encoding

Structural Encoding
Aim : Encoding the structure of the t-th snapshot

1.  Self- Random Walk :

rwPE! = (RWi;, RW2, ..., RW

7 ") (x )

2. Laplacian

At =T — D" atpt — Ut AT
lapPE; = (Uf,Ufy, ... Ul dpe)

3. GNN

ennPE! = Z; = GNN(GY)

Temporal Encoding

Aim: Encoding the position of the snapshot in the
DTDG

timePE(t) = Heme[t].

Similar to BERT we learn the embedding position of
the snapshot in the sequence.



Token construction

Token = Concatenation of the node, structural and time embedding
g=MLP

z; ¢+ = g(H; ® posPE! @ timePE;),

This, compose our token Matrix Z containing all of our nodes at each timestep



Self Attention in Z.

Attention computing e

The attention between all nodes at each time, is computed as follow Feed

Forward

ZQZTKT
Vd

SA(Z) = softmax ( )ZV,

Multi-Head

Attention
=/
Positional £
One layer of a Transformer Encoder is enough (Simplifying Wu 2023) Encoding

Input
Embedding

Inputs



Efficient Implementation

Time Window

In most of real DTDG, a very long term
dependency is not crucial.

We use a modulable time-window to capture the
necessary time context to perform

W is a hyperparameter.

We reduce the number of token:
TxNtoWxN, withW<<T.

Flash Attention 2.0

Reduce the memory
complexity

K:dxN
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MLP

Training
Suvpes — g(eu‘vpos )
Suvpeg = g(euvneg )

(Eq.8)
L = BCE(s,,, label)
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After the space-time attention on DTDG — Z of
dimension N (nodes) W (time steps) and d (emb
dim).

For each node u and v: W representations.

Aim : Capture dependencies between those two
representations with cross attention

Edge Representation Module




Edge Representation with cross-attention

A

Time-Pooling

The aim is to predict from the snapshots ~ {G}!Z] thelinks Et, of (3t

For u,v we have W representations in {G?}!_] respectively
Training
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Suvney = 9(Cutn)
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Results



Custom baseline

Baseline: Keep the classical learning framework

Replace GNN by a Full Attention Transformer

Spatial Learning Take f = LSTM or GRU

Zt =GN N|(G,)

Aim : Show the benefits of a full spatio-temporal

Ht . f (Ht— 1 Zt) attention against a full spatial attention updated by f.
— ’

Dynamic Learning LSTM'GT



Datasets

Datasets | Domains  Nodes Links Snapshots
CanParl Politics 734 74,478 14
USLegis | Politics 225 60,396 12
Flights Transports 13,169 1,927,145 122
Trade Economics 255 507,497 32
UNVote Politics 201 1,035,742 72
Contact Proximity 692 2,426,279 8064
HepPh Citations 15,330 976,097 36
AS733 Router 6,628 13,512 30
Enron Mail 184 790 11
Colab Citations 315 943 10

Different datasets we used in
experiments.

Medium-size datasets in term of nodes.



Impact of FAST components

Table 2: Performance Comparison of LSTM-GT, FAST

without Edge, and FAST Models. Results in ROC-AUC. LSTM-GT follow the conventional

framework

Datasets | LSTM-GT | FAST w/o Edge FAST
CanParl | 86.29 +1.10 89.45 +0.38 92.37 +£0.51
USLegis | 92.64 +0.70 93.30 +0.29 95.80 +0.11 FAST w/o edge is only the
Flights 95.17 £ 0.34 99.04 + 0.61 99.07 + 0.41 Space-time attention on DTDG
Trade 91.81 £0.11 94.01 £0.73 96.73 +0.29 with dot product.
UNVote | 91.38 £0.74 93.56 +0.68 99.94 + 0.05
Contact | 92.49 +0.97 97.41 £0.10 98.12 + 0.37
HepPh | 81.40 +0.45 90.44 +1.07 93.21 +0.37
AS733 | 94.75 +0.87 96.84 +0.26 97.46 + 0.45 : : :
Enron 90.20 £ 1.12 90.57 £0.27 96.39 +0.18 f:srl-slzrig?llgﬁfgovéﬁrethe edge
COLAB | 82.95+045 | 8634034 | 90.84+041 P




Comparison to DTDG models

Table 3: Comparison to DTDG models on discrete data using (Yang et al., 2021) protocol.

Method HepPh AS733 Enron Colab Avg.

AUC AP AUC AP AUC AP AUC AP AUC
GAE 69.44+0.56 73.61+0.58 | 93.21+1.53 94.75+0.90 | 92.50+0.68 93.48+0.64 | 8457 +0.64 87.69+0.44 | 84.93 +0.85
VGAE 7239+0.11 7578 +0.06 | 9576 +0.91 96.42+0.55 | 91.93+0.34 9345+0.49 | 85.16+0.74 88.70+0.35 | 86.31 +0.52
EvolveGCN | 76.82+1.46 81.18+0.89 | 92.47+0.04 9528+0.01 | 90.12+0.69 92.71+0.34 | 83.88+0.53 87.53+0.22 | 85.82 +0.68
GRUGCN | 82.86+0.53 85.87+0.23 | 9496+0.35 96.64+0.22 | 9247 +0.36 9338+024 | 84.60+092 87.87+0.58 | 88.72+0.54
DySat 81.02+0.25 84.47+023 | 95.06+021 96.72+0.12 | 93.06+0.97 93.06+1.05 | 87.25+1.70 90.40+1.47 | 89.10+0.78
VGRNN 77.65+0.99 8095+094 | 95.17+0.62 96.69+0.31 | 93.10+0.57 93.29+0.69 | 85.95+0.49 87.77+0.79 | 87.97 +0.67
HTGN 91.13+0.14 89.52+0.28 | 98.75+0.03 98.41+0.03 | 94.17+0.17 94.31+026 | 89.26+0.17 91.91+0.07 | 93.33+0.13
FAST | 93.21+0.37 90.74+0.51 | 97.46+0.45 98.16+0.36 | 96.39+0.17 9540 +0.29 | 90.84 +0.41 92.15+0.28 | 94.48 +0.35




Comparison to CTDG models

Table 4: Comparison to CTDG models on discrete data using (Yu et al., 2023) protocol (AUC).

Method | CanParl | USLegis | Flights ‘ Trade | UNVote ‘ Contact | Avg.
JODIE 78.21+£0.23 82.85 £ 1.07 96.21 £ 1.42 69.62 +0.44 68.53 +£0.95 96.66 = 0.89 82.01 £0.83
DyREP 73.35 £3.67 82.28 £0.32 95.95 £ 0.62 67.44 + 0.83 67.18 +1.04 96.48 +0.14 80.45 £ 1.10
TGAT 75.69 £0.78 75.84 +1.99 94.13 +£0.17 64.01 £0.12 52.83 +1.12 96.95 + 0.08 76.58 +0.71
TGN 76.99 + 1.80 83.34 £+ 043 98.22 £ 0.13 69.10 = 1.67 69.71 £2.65 97.54 £ 0.35 8248 £1.17
CAWN 75.70 £ 3.27 77.16 £ 0.39 98.45 +0.01 68.54 +0.18 53.09 +£0.22 89.99 + 0.34 77.16 £0.74
EdgeBank 64.14 £ 0.00 62.57 £ 0.00 90.23 + 0.00 66.75 £ 0.00 62.97 +0.00 94.34 + 0.00 73.50 £0.00
TCL 72.46 £3.23 76.27 £ 0.63 91.21 £0.02 64.72 £ 0.05 51.88 £0.36 94.15 £ 0.09 75.11 £0.73
GraphMixer 83.17 £ 0.53 76.96 = 0.79 91.13 +£0.01 65.52 £ 0.51 52.46 +0.27 93.94 + 0.02 77.20 £0.36
DyGformer 97.76 £ 0.41 77.90 £ 0.58 98.93 +0.01 70.20 + 1.44 57.12 £ 0.62 98.53 + 0.01 83.41 +£0.51
FAST | 9237+051 | 9580+011 | 99.07£041 | 9673029 | 99.94+005 | 98124037 | 96.88+026

+ 13pt average against the last CTDG models.



Ablations



Temporal and Structural Encoding

Table 5: Comparison of FAST RWPE with and without

AUC

Scores

‘CanParl USLegis Trade

B RWPE
I |LapPE

GCNPE |

AP

CanParl USLegis Trade

Figure 4: Comparison of Laplacian (LapPE), Random Walk
(RWPE) encodings and GCN encodings.

temporal encoding (TE).
Method AUC AP
E FAST RWPE 92.37 + 0.51 92.44 + 0.53
5 FAST RWPE w/o TE 91.67 & 0.38 88.01 £ 0.61
§0 FAST RWPE 95.80 + 0.11 92.44 + 1.27
§ FAST RWPE w/o TE 93.65 £ 0.73 89.70 £ 0.56
3 FAST RWPE 94.01 + 0.73 92.06 + 0.66
& FAST RWPE w/o TE 92.81 £ 0.19 90.94 + 0.37

We found RWPE is an appropriate PE for
our framework.

The choice of PE can have a major impact
on results



Time Window
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Future works and perspectives



Unified spatio-temporal encoding

- FAST (as existing works for dynamic graph transformers)
combines positional encoding and temporal encoding

- ldea: Consider the supra-adjacency matrix to compute an
encoding that better models the spatio-temporal
position of a node.

- Existing works compute metrics and spectral properties
on multilayers graphs. Cozzo, E,, et al.. Multilayer networks:
metrics and spectral properties.

t t+1 t tH+1
| @ i® | @——@®
j® @ jo——®
01 00 0011
10 00 0011

0000
0000

Supra adjacency matrix of a
DTDG.



Spatio-temporal motif classification

- In static graphs to evaluate expressivity of differents models — Classify
structure like cycle, clique, triangle...

- What spatio-temporal motif can we try to detect to evaluate experimentally
the expressive power of dynamic graphs model ? (ex: Blinking motifs such as

cycles or triangles in graphs.)



Merci !



